{"title":"基于藤的多变量脑电图眼状态时间序列贝叶斯分类","authors":"Chunfang Zhang, C. Czado","doi":"10.1093/jrsssc/qlad038","DOIUrl":null,"url":null,"abstract":"\n Sometimes classification tasks have to be based on multivariate time series data collected for each class. In these situations the data for each class might exhibit non-stationary behaviour together with complex dependence structures. We propose a vine copula-based approach to capture these features in each class before applying a Bayesian classifier. Vine copulas have been very successful in modelling asymmetric tail dependence among variables and are coupled with non-stationary univariate time series to model the multivariate time series data for each class. We illustrate this classification approach using data from a neural activity experiment using electroencephalography, where we want to classify the eye state. The level of neural activity was collected over time for multiple locations on the scalp. Our approach is able to identify relevant locations and allows for a model-based interpretation of the data generating process. A cross-validation study with comparison to competitor classifiers for this data set shows good performance of the proposed classifier.","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"264 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vine copula-based Bayesian classification for multivariate time series of electroencephalography eye states\",\"authors\":\"Chunfang Zhang, C. Czado\",\"doi\":\"10.1093/jrsssc/qlad038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Sometimes classification tasks have to be based on multivariate time series data collected for each class. In these situations the data for each class might exhibit non-stationary behaviour together with complex dependence structures. We propose a vine copula-based approach to capture these features in each class before applying a Bayesian classifier. Vine copulas have been very successful in modelling asymmetric tail dependence among variables and are coupled with non-stationary univariate time series to model the multivariate time series data for each class. We illustrate this classification approach using data from a neural activity experiment using electroencephalography, where we want to classify the eye state. The level of neural activity was collected over time for multiple locations on the scalp. Our approach is able to identify relevant locations and allows for a model-based interpretation of the data generating process. A cross-validation study with comparison to competitor classifiers for this data set shows good performance of the proposed classifier.\",\"PeriodicalId\":49981,\"journal\":{\"name\":\"Journal of the Royal Statistical Society Series C-Applied Statistics\",\"volume\":\"264 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society Series C-Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssc/qlad038\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series C-Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlad038","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Vine copula-based Bayesian classification for multivariate time series of electroencephalography eye states
Sometimes classification tasks have to be based on multivariate time series data collected for each class. In these situations the data for each class might exhibit non-stationary behaviour together with complex dependence structures. We propose a vine copula-based approach to capture these features in each class before applying a Bayesian classifier. Vine copulas have been very successful in modelling asymmetric tail dependence among variables and are coupled with non-stationary univariate time series to model the multivariate time series data for each class. We illustrate this classification approach using data from a neural activity experiment using electroencephalography, where we want to classify the eye state. The level of neural activity was collected over time for multiple locations on the scalp. Our approach is able to identify relevant locations and allows for a model-based interpretation of the data generating process. A cross-validation study with comparison to competitor classifiers for this data set shows good performance of the proposed classifier.
期刊介绍:
The Journal of the Royal Statistical Society, Series C (Applied Statistics) is a journal of international repute for statisticians both inside and outside the academic world. The journal is concerned with papers which deal with novel solutions to real life statistical problems by adapting or developing methodology, or by demonstrating the proper application of new or existing statistical methods to them. At their heart therefore the papers in the journal are motivated by examples and statistical data of all kinds. The subject-matter covers the whole range of inter-disciplinary fields, e.g. applications in agriculture, genetics, industry, medicine and the physical sciences, and papers on design issues (e.g. in relation to experiments, surveys or observational studies).
A deep understanding of statistical methodology is not necessary to appreciate the content. Although papers describing developments in statistical computing driven by practical examples are within its scope, the journal is not concerned with simply numerical illustrations or simulation studies. The emphasis of Series C is on case-studies of statistical analyses in practice.