外部熔盐接收器采用波纹管

R. Uhlig, C. Frantz, R. Buck
{"title":"外部熔盐接收器采用波纹管","authors":"R. Uhlig, C. Frantz, R. Buck","doi":"10.1063/1.5117573","DOIUrl":null,"url":null,"abstract":"CFD models have been used to show the potential of using corrugated tubes instead of smooth tubes at a solar thermal receiver using molten salt as heat transfer fluid. The results were compared on the basis of a 700 MWth receiver. Absorber tubes with an inner diameter between 32.8mm and 70 mm using a helical ribbed structure have been analyzed. The results show that a positive effect can only be achieved for configurations where the fluid velocity is lower than for the base hydraulic design with a fully developed turbulent flow. The presented approach proposes therefore tubes with larger inner diameter and reduced fluid velocity and pressure drop. The difference in pressure drop to the base design can then be used to introduce a swirl flow which leads to better mixing of the fluid and therefore lowers the temperatures of the tube wall, the fluid and also the thermal gradients. Corrugated tubes can be used to add an additional design parameter for a thermo-hydraulic optimization of the receiver.CFD models have been used to show the potential of using corrugated tubes instead of smooth tubes at a solar thermal receiver using molten salt as heat transfer fluid. The results were compared on the basis of a 700 MWth receiver. Absorber tubes with an inner diameter between 32.8mm and 70 mm using a helical ribbed structure have been analyzed. The results show that a positive effect can only be achieved for configurations where the fluid velocity is lower than for the base hydraulic design with a fully developed turbulent flow. The presented approach proposes therefore tubes with larger inner diameter and reduced fluid velocity and pressure drop. The difference in pressure drop to the base design can then be used to introduce a swirl flow which leads to better mixing of the fluid and therefore lowers the temperatures of the tube wall, the fluid and also the thermal gradients. Corrugated tubes can be used to add an additional design parameter for a thermo-hydraulic optimization of the receiver.","PeriodicalId":21790,"journal":{"name":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using corrugated tubes in external molten salt receivers\",\"authors\":\"R. Uhlig, C. Frantz, R. Buck\",\"doi\":\"10.1063/1.5117573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CFD models have been used to show the potential of using corrugated tubes instead of smooth tubes at a solar thermal receiver using molten salt as heat transfer fluid. The results were compared on the basis of a 700 MWth receiver. Absorber tubes with an inner diameter between 32.8mm and 70 mm using a helical ribbed structure have been analyzed. The results show that a positive effect can only be achieved for configurations where the fluid velocity is lower than for the base hydraulic design with a fully developed turbulent flow. The presented approach proposes therefore tubes with larger inner diameter and reduced fluid velocity and pressure drop. The difference in pressure drop to the base design can then be used to introduce a swirl flow which leads to better mixing of the fluid and therefore lowers the temperatures of the tube wall, the fluid and also the thermal gradients. Corrugated tubes can be used to add an additional design parameter for a thermo-hydraulic optimization of the receiver.CFD models have been used to show the potential of using corrugated tubes instead of smooth tubes at a solar thermal receiver using molten salt as heat transfer fluid. The results were compared on the basis of a 700 MWth receiver. Absorber tubes with an inner diameter between 32.8mm and 70 mm using a helical ribbed structure have been analyzed. The results show that a positive effect can only be achieved for configurations where the fluid velocity is lower than for the base hydraulic design with a fully developed turbulent flow. The presented approach proposes therefore tubes with larger inner diameter and reduced fluid velocity and pressure drop. The difference in pressure drop to the base design can then be used to introduce a swirl flow which leads to better mixing of the fluid and therefore lowers the temperatures of the tube wall, the fluid and also the thermal gradients. Corrugated tubes can be used to add an additional design parameter for a thermo-hydraulic optimization of the receiver.\",\"PeriodicalId\":21790,\"journal\":{\"name\":\"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5117573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5117573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

CFD模型已经被用来展示在使用熔盐作为传热流体的太阳能热接收器上使用波纹管代替光滑管的潜力。并以一个700mth接收机为例进行了比较。对内径为32.8mm ~ 70 mm的螺旋肋结构吸波管进行了分析。结果表明,只有当流体速度低于基本水力设计时,具有充分发展的湍流,才能取得积极的效果。因此,该方法提出了更大的内径和更小的流体速度和压降的管道。基础设计的压降差异可以用来引入涡流流,从而使流体更好地混合,从而降低管壁、流体和热梯度的温度。波纹管可以用来增加一个额外的设计参数的热液优化的接收器。CFD模型已经被用来展示在使用熔盐作为传热流体的太阳能热接收器上使用波纹管代替光滑管的潜力。并以一个700mth接收机为例进行了比较。对内径为32.8mm ~ 70 mm的螺旋肋结构吸波管进行了分析。结果表明,只有当流体速度低于基本水力设计时,具有充分发展的湍流,才能取得积极的效果。因此,该方法提出了更大的内径和更小的流体速度和压降的管道。基础设计的压降差异可以用来引入涡流流,从而使流体更好地混合,从而降低管壁、流体和热梯度的温度。波纹管可以用来增加一个额外的设计参数的热液优化的接收器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using corrugated tubes in external molten salt receivers
CFD models have been used to show the potential of using corrugated tubes instead of smooth tubes at a solar thermal receiver using molten salt as heat transfer fluid. The results were compared on the basis of a 700 MWth receiver. Absorber tubes with an inner diameter between 32.8mm and 70 mm using a helical ribbed structure have been analyzed. The results show that a positive effect can only be achieved for configurations where the fluid velocity is lower than for the base hydraulic design with a fully developed turbulent flow. The presented approach proposes therefore tubes with larger inner diameter and reduced fluid velocity and pressure drop. The difference in pressure drop to the base design can then be used to introduce a swirl flow which leads to better mixing of the fluid and therefore lowers the temperatures of the tube wall, the fluid and also the thermal gradients. Corrugated tubes can be used to add an additional design parameter for a thermo-hydraulic optimization of the receiver.CFD models have been used to show the potential of using corrugated tubes instead of smooth tubes at a solar thermal receiver using molten salt as heat transfer fluid. The results were compared on the basis of a 700 MWth receiver. Absorber tubes with an inner diameter between 32.8mm and 70 mm using a helical ribbed structure have been analyzed. The results show that a positive effect can only be achieved for configurations where the fluid velocity is lower than for the base hydraulic design with a fully developed turbulent flow. The presented approach proposes therefore tubes with larger inner diameter and reduced fluid velocity and pressure drop. The difference in pressure drop to the base design can then be used to introduce a swirl flow which leads to better mixing of the fluid and therefore lowers the temperatures of the tube wall, the fluid and also the thermal gradients. Corrugated tubes can be used to add an additional design parameter for a thermo-hydraulic optimization of the receiver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-accuracy real-time monitoring of solar radiation attenuation in commercial solar towers Optical and thermal performance of a novel solar particle receiver The fluidized bed air heat exchanger in a hybrid Brayton-cycle solar power plant “MOSAIC”, A new CSP plant concept for the highest concentration ratios at the lowest cost Value contribution of solar plants to the Chilean electric system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1