{"title":"膨胀型硅微隙散热器流动沸腾特性研究","authors":"Alam Tamanna, P. Lee","doi":"10.1109/ITHERM.2014.6892317","DOIUrl":null,"url":null,"abstract":"Flow boiling microgap heat sink is attractive due to its high heat transfer capability in compact spaces with a smaller rate of coolant flow than its single phase counterpart. Other advantages of this method are the ease of fabrication and implementation (direct cooling). Although there is general agreement that this system may be able to maintain greater temperature uniformity across the heat sink and reduce flow boiling instabilities, their heat transfer and instability characteristics along with flow visualization in expanding microgap heat sink are unavailable in literature till date and require investigation.","PeriodicalId":12453,"journal":{"name":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"4 1","pages":"458-465"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of flow boiling characteristics in expanding silicon microgap heat sink\",\"authors\":\"Alam Tamanna, P. Lee\",\"doi\":\"10.1109/ITHERM.2014.6892317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flow boiling microgap heat sink is attractive due to its high heat transfer capability in compact spaces with a smaller rate of coolant flow than its single phase counterpart. Other advantages of this method are the ease of fabrication and implementation (direct cooling). Although there is general agreement that this system may be able to maintain greater temperature uniformity across the heat sink and reduce flow boiling instabilities, their heat transfer and instability characteristics along with flow visualization in expanding microgap heat sink are unavailable in literature till date and require investigation.\",\"PeriodicalId\":12453,\"journal\":{\"name\":\"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"volume\":\"4 1\",\"pages\":\"458-465\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2014.6892317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2014.6892317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of flow boiling characteristics in expanding silicon microgap heat sink
Flow boiling microgap heat sink is attractive due to its high heat transfer capability in compact spaces with a smaller rate of coolant flow than its single phase counterpart. Other advantages of this method are the ease of fabrication and implementation (direct cooling). Although there is general agreement that this system may be able to maintain greater temperature uniformity across the heat sink and reduce flow boiling instabilities, their heat transfer and instability characteristics along with flow visualization in expanding microgap heat sink are unavailable in literature till date and require investigation.