{"title":"Kolmogorov-Wiener滤波器在重尾过程预测中的应用","authors":"V. Gorev, A. Gusev, V. Korniienko, Y. Shedlovska","doi":"10.13052/jcsm2245-1439.123.4","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the investigation of the applicability of the Kolmogorov–Wiener filter to the prediction of heavy-tail processes. As is known, telecommunication traffic in systems with data packet transfer is considered to be a heavy-tail process. There are a lot of rather sophisticated approaches to traffic prediction; however, in the rather simple case of stationary traffic sophisticated approaches may not be needed, and a simple approach, such as the Kolmogorov–Wiener filter, may be applied. However, as far as we know, this approach has not been considered in recent papers. In our previous papers, we theoretically developed a method for obtaining the filter weight function in the continuous case. The Kolmogorov–Wiener filter may be applied only to stationary processes, but in some models telecommunication traffic is treated as a stationary process, and thus the use of the Kolmogorov–Wiener filter may be of practical interest. In this paper, we generate stationary heavy-tail modeled data similar to fractional Gaussian noise and investigate the applicability of the Kolmogorov–Wiener filter to data prediction. Both non-smoothed and smoothed processes are investigated. It is shown that both the discrete and the continuous Kolmogorov–Wiener filter may be used in a rather accurate short-term prediction of a heavy-tail smoothed stationary random process. The paper results may be used for stationary telecommunication traffic prediction in systems with packet data transfer.","PeriodicalId":37820,"journal":{"name":"Journal of Cyber Security and Mobility","volume":"148 1","pages":"315-338"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Use of the Kolmogorov-Wiener Filter for Heavy-tail Process Prediction\",\"authors\":\"V. Gorev, A. Gusev, V. Korniienko, Y. Shedlovska\",\"doi\":\"10.13052/jcsm2245-1439.123.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to the investigation of the applicability of the Kolmogorov–Wiener filter to the prediction of heavy-tail processes. As is known, telecommunication traffic in systems with data packet transfer is considered to be a heavy-tail process. There are a lot of rather sophisticated approaches to traffic prediction; however, in the rather simple case of stationary traffic sophisticated approaches may not be needed, and a simple approach, such as the Kolmogorov–Wiener filter, may be applied. However, as far as we know, this approach has not been considered in recent papers. In our previous papers, we theoretically developed a method for obtaining the filter weight function in the continuous case. The Kolmogorov–Wiener filter may be applied only to stationary processes, but in some models telecommunication traffic is treated as a stationary process, and thus the use of the Kolmogorov–Wiener filter may be of practical interest. In this paper, we generate stationary heavy-tail modeled data similar to fractional Gaussian noise and investigate the applicability of the Kolmogorov–Wiener filter to data prediction. Both non-smoothed and smoothed processes are investigated. It is shown that both the discrete and the continuous Kolmogorov–Wiener filter may be used in a rather accurate short-term prediction of a heavy-tail smoothed stationary random process. The paper results may be used for stationary telecommunication traffic prediction in systems with packet data transfer.\",\"PeriodicalId\":37820,\"journal\":{\"name\":\"Journal of Cyber Security and Mobility\",\"volume\":\"148 1\",\"pages\":\"315-338\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cyber Security and Mobility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/jcsm2245-1439.123.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cyber Security and Mobility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jcsm2245-1439.123.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
On the Use of the Kolmogorov-Wiener Filter for Heavy-tail Process Prediction
This paper is devoted to the investigation of the applicability of the Kolmogorov–Wiener filter to the prediction of heavy-tail processes. As is known, telecommunication traffic in systems with data packet transfer is considered to be a heavy-tail process. There are a lot of rather sophisticated approaches to traffic prediction; however, in the rather simple case of stationary traffic sophisticated approaches may not be needed, and a simple approach, such as the Kolmogorov–Wiener filter, may be applied. However, as far as we know, this approach has not been considered in recent papers. In our previous papers, we theoretically developed a method for obtaining the filter weight function in the continuous case. The Kolmogorov–Wiener filter may be applied only to stationary processes, but in some models telecommunication traffic is treated as a stationary process, and thus the use of the Kolmogorov–Wiener filter may be of practical interest. In this paper, we generate stationary heavy-tail modeled data similar to fractional Gaussian noise and investigate the applicability of the Kolmogorov–Wiener filter to data prediction. Both non-smoothed and smoothed processes are investigated. It is shown that both the discrete and the continuous Kolmogorov–Wiener filter may be used in a rather accurate short-term prediction of a heavy-tail smoothed stationary random process. The paper results may be used for stationary telecommunication traffic prediction in systems with packet data transfer.
期刊介绍:
Journal of Cyber Security and Mobility is an international, open-access, peer reviewed journal publishing original research, review/survey, and tutorial papers on all cyber security fields including information, computer & network security, cryptography, digital forensics etc. but also interdisciplinary articles that cover privacy, ethical, legal, economical aspects of cyber security or emerging solutions drawn from other branches of science, for example, nature-inspired. The journal aims at becoming an international source of innovation and an essential reading for IT security professionals around the world by providing an in-depth and holistic view on all security spectrum and solutions ranging from practical to theoretical. Its goal is to bring together researchers and practitioners dealing with the diverse fields of cybersecurity and to cover topics that are equally valuable for professionals as well as for those new in the field from all sectors industry, commerce and academia. This journal covers diverse security issues in cyber space and solutions thereof. As cyber space has moved towards the wireless/mobile world, issues in wireless/mobile communications and those involving mobility aspects will also be published.