L. Salvati, M. Mattu, F. Tiberi, F. Polticelli, P. Ascenzi
{"title":"no供体s -亚硝基乙酰青霉胺对酿酒酵母菌磷酸甘菊糖异构酶的抑制作用","authors":"L. Salvati, M. Mattu, F. Tiberi, F. Polticelli, P. Ascenzi","doi":"10.1080/14756360109162377","DOIUrl":null,"url":null,"abstract":"Phosphomannose isomerase (PMI; EC. 5.3.1.8) is an essential metalloenzyme in the early steps of the protein glycosylation pathway in both prokaryotes and eukaryotes. The Cysl50 residue (according to Candida albicans PMI numbering) is conserved in the active centre of mammalian and yeast PMI, but not in bacterial species where it is replaced by Asn. Here, the dose- and time-dependent inhibitory effect of the NO-donor S-nitroso-acetyl-penicillamine on the Saccharomyces cerevisiae PMI catalytic activity is reported. The analysis of the X-ray crystal structure of C. albicans PMI and of the molecular model of S. cerevisiae PMI provides a rationale for the low reactivity of Cysl50 towards alkylating and nitrosylating agents.","PeriodicalId":15776,"journal":{"name":"Journal of enzyme inhibition","volume":"44 1","pages":"287 - 292"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inhibition of Saccharomyces cerevisiae Phosphomannose Isomerase by the NO-donor S-nitroso-acetyl-penicillamine\",\"authors\":\"L. Salvati, M. Mattu, F. Tiberi, F. Polticelli, P. Ascenzi\",\"doi\":\"10.1080/14756360109162377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phosphomannose isomerase (PMI; EC. 5.3.1.8) is an essential metalloenzyme in the early steps of the protein glycosylation pathway in both prokaryotes and eukaryotes. The Cysl50 residue (according to Candida albicans PMI numbering) is conserved in the active centre of mammalian and yeast PMI, but not in bacterial species where it is replaced by Asn. Here, the dose- and time-dependent inhibitory effect of the NO-donor S-nitroso-acetyl-penicillamine on the Saccharomyces cerevisiae PMI catalytic activity is reported. The analysis of the X-ray crystal structure of C. albicans PMI and of the molecular model of S. cerevisiae PMI provides a rationale for the low reactivity of Cysl50 towards alkylating and nitrosylating agents.\",\"PeriodicalId\":15776,\"journal\":{\"name\":\"Journal of enzyme inhibition\",\"volume\":\"44 1\",\"pages\":\"287 - 292\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of enzyme inhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14756360109162377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of enzyme inhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14756360109162377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inhibition of Saccharomyces cerevisiae Phosphomannose Isomerase by the NO-donor S-nitroso-acetyl-penicillamine
Phosphomannose isomerase (PMI; EC. 5.3.1.8) is an essential metalloenzyme in the early steps of the protein glycosylation pathway in both prokaryotes and eukaryotes. The Cysl50 residue (according to Candida albicans PMI numbering) is conserved in the active centre of mammalian and yeast PMI, but not in bacterial species where it is replaced by Asn. Here, the dose- and time-dependent inhibitory effect of the NO-donor S-nitroso-acetyl-penicillamine on the Saccharomyces cerevisiae PMI catalytic activity is reported. The analysis of the X-ray crystal structure of C. albicans PMI and of the molecular model of S. cerevisiae PMI provides a rationale for the low reactivity of Cysl50 towards alkylating and nitrosylating agents.