测定香蕉成熟程度的数据库

Senthilarasi M, Md Mansoor Roomi S, Sheik Naveedh A
{"title":"测定香蕉成熟程度的数据库","authors":"Senthilarasi M, Md Mansoor Roomi S, Sheik Naveedh A","doi":"10.1145/3009977.3009996","DOIUrl":null,"url":null,"abstract":"Ripening treatment of banana is accomplished globally with controlled ethylene gas, temperature, airflow, humidity and time. During the ripening, the peel colour of banana changes from green to yellow with brown spots. The shelf life of banana has significant quality indices and colour transformations which impacts the banana characteristics like softness, sweet and taste. Therefore, an automatic control system can monitor the ripening level of bananas to maintain the peel colour, firm pulp and texture. Appropriate datasets are required for the experimentation and evaluation of the ripening level determination algorithms. This paper is intended to generate a database for Musa Species (yellow bananas) with different ripening levels such as unripe, ripe and overripe. Rasthali (Musa AAB) and Monthan (Musa ABB) hands are chosen as samples to create the database. MUSA database comprises of 3108 banana images which are acquired at 7 view angles and 12 rotations at a constant illumination. The supremacy of Musa database is tested with the state of art ripening level determination algorithms.","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"1 1","pages":"71:1-71:7"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MUSA: a banana database for ripening level determination\",\"authors\":\"Senthilarasi M, Md Mansoor Roomi S, Sheik Naveedh A\",\"doi\":\"10.1145/3009977.3009996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ripening treatment of banana is accomplished globally with controlled ethylene gas, temperature, airflow, humidity and time. During the ripening, the peel colour of banana changes from green to yellow with brown spots. The shelf life of banana has significant quality indices and colour transformations which impacts the banana characteristics like softness, sweet and taste. Therefore, an automatic control system can monitor the ripening level of bananas to maintain the peel colour, firm pulp and texture. Appropriate datasets are required for the experimentation and evaluation of the ripening level determination algorithms. This paper is intended to generate a database for Musa Species (yellow bananas) with different ripening levels such as unripe, ripe and overripe. Rasthali (Musa AAB) and Monthan (Musa ABB) hands are chosen as samples to create the database. MUSA database comprises of 3108 banana images which are acquired at 7 view angles and 12 rotations at a constant illumination. The supremacy of Musa database is tested with the state of art ripening level determination algorithms.\",\"PeriodicalId\":93806,\"journal\":{\"name\":\"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing\",\"volume\":\"1 1\",\"pages\":\"71:1-71:7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3009977.3009996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009977.3009996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

香蕉的成熟处理是在控制乙烯气体、温度、气流、湿度和时间的情况下完成的。在成熟过程中,香蕉的果皮颜色由绿色变为黄色,并带有棕色斑点。香蕉在保质期内的品质指标和颜色变化显著,影响香蕉的柔软度、甜度和口感等特性。因此,一个自动控制系统可以监控香蕉的成熟程度,以保持果皮的颜色,坚固的果肉和质地。成熟水平确定算法的实验和评估需要适当的数据集。本文旨在建立一个不同成熟度(如未成熟、成熟和过熟)的Musa种(黄香蕉)数据库。选择Rasthali (Musa AAB)和Monthan (Musa ABB)的手作为样本来创建数据库。MUSA数据库包括3108张香蕉图像,这些图像是在恒定照明下以7个视角和12个旋转获得的。用最先进的成熟水平确定算法检验了穆萨数据库的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MUSA: a banana database for ripening level determination
Ripening treatment of banana is accomplished globally with controlled ethylene gas, temperature, airflow, humidity and time. During the ripening, the peel colour of banana changes from green to yellow with brown spots. The shelf life of banana has significant quality indices and colour transformations which impacts the banana characteristics like softness, sweet and taste. Therefore, an automatic control system can monitor the ripening level of bananas to maintain the peel colour, firm pulp and texture. Appropriate datasets are required for the experimentation and evaluation of the ripening level determination algorithms. This paper is intended to generate a database for Musa Species (yellow bananas) with different ripening levels such as unripe, ripe and overripe. Rasthali (Musa AAB) and Monthan (Musa ABB) hands are chosen as samples to create the database. MUSA database comprises of 3108 banana images which are acquired at 7 view angles and 12 rotations at a constant illumination. The supremacy of Musa database is tested with the state of art ripening level determination algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Multi-Scale Residual Dense Dehazing Network (MSRDNet) for Single Image Dehazing✱ Robust Brain State Decoding using Bidirectional Long Short Term Memory Networks in functional MRI. ICVGIP 2018: 11th Indian Conference on Computer Vision, Graphics and Image Processing, Hyderabad, India, 18-22 December, 2018 Towards semantic visual representation: augmenting image representation with natural language descriptors Adaptive artistic stylization of images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1