稠密假目标干扰抑制的字典学习与波形设计

IF 0.6 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Applied Computational Electromagnetics Society Journal Pub Date : 2021-01-01 DOI:10.47037/2021.aces.j.36098
Tao Jiang, L. Yu, Jiangnan Xing, Yinfeng Xia, Zhe Du, Yingsong Li, Guoning Zhi, Yanbo Zhao
{"title":"稠密假目标干扰抑制的字典学习与波形设计","authors":"Tao Jiang, L. Yu, Jiangnan Xing, Yinfeng Xia, Zhe Du, Yingsong Li, Guoning Zhi, Yanbo Zhao","doi":"10.47037/2021.aces.j.36098","DOIUrl":null,"url":null,"abstract":"─ For linear frequency modulation (LFM) pulse radars, dense false targets generated by new system jamming seriously damage the performance of such radar systems. In order to avoid the influence of dense false target jamming, an anti-jamming strategy combining waveform design and sparse decomposition are proposed. Specifically, the radar system transmits a random pulse initial phase (RPIP) signal, and uses peak detection method to detect the deception jamming. The phase distribution of the RPIP signal is partially randomly perturbed for a jamming, and we use optimization algorithm to design a phase perturbed LFM (PPLFM) signal with good autocorrelation characteristics. Using the correlation function of the designed signal, the target sample set and the jamming sample set are constructed, and the target echo and the jamming signal are separated using designed dictionary learning method to achieve suppression of dense false target jamming and range side-lobes. The effectiveness of the proposed method is verified by numerical simulation, and the results proved that this proposed method maintains good anti-jamming performance under low signal-tonoise ratio (SNR). Index Terms ─ Anti-jamming, dense false target jamming, dictionary learning, jamming detection, waveform design.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dictionary Learning and Waveform Design for Dense False Target Jamming Suppression\",\"authors\":\"Tao Jiang, L. Yu, Jiangnan Xing, Yinfeng Xia, Zhe Du, Yingsong Li, Guoning Zhi, Yanbo Zhao\",\"doi\":\"10.47037/2021.aces.j.36098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"─ For linear frequency modulation (LFM) pulse radars, dense false targets generated by new system jamming seriously damage the performance of such radar systems. In order to avoid the influence of dense false target jamming, an anti-jamming strategy combining waveform design and sparse decomposition are proposed. Specifically, the radar system transmits a random pulse initial phase (RPIP) signal, and uses peak detection method to detect the deception jamming. The phase distribution of the RPIP signal is partially randomly perturbed for a jamming, and we use optimization algorithm to design a phase perturbed LFM (PPLFM) signal with good autocorrelation characteristics. Using the correlation function of the designed signal, the target sample set and the jamming sample set are constructed, and the target echo and the jamming signal are separated using designed dictionary learning method to achieve suppression of dense false target jamming and range side-lobes. The effectiveness of the proposed method is verified by numerical simulation, and the results proved that this proposed method maintains good anti-jamming performance under low signal-tonoise ratio (SNR). Index Terms ─ Anti-jamming, dense false target jamming, dictionary learning, jamming detection, waveform design.\",\"PeriodicalId\":8207,\"journal\":{\"name\":\"Applied Computational Electromagnetics Society Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computational Electromagnetics Society Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.47037/2021.aces.j.36098\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2021.aces.j.36098","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

─对于线性调频(LFM)脉冲雷达来说,新系统干扰产生的密集假目标严重损害了雷达系统的性能。为了避免密集假目标干扰的影响,提出了波形设计与稀疏分解相结合的抗干扰策略。具体来说,雷达系统发送随机脉冲初始相位(rip)信号,采用峰值检测方法检测欺骗干扰。针对RPIP信号的相位分布受到部分随机扰动的干扰,利用优化算法设计了相位扰动LFM信号,使其具有良好的自相关特性。利用设计信号的相关函数,构造目标样本集和干扰样本集,利用设计的字典学习方法分离目标回波和干扰信号,实现对密集假目标干扰和距离旁瓣的抑制。通过数值仿真验证了该方法的有效性,结果表明该方法在低信噪比条件下仍能保持良好的抗干扰性能。索引术语─抗干扰、密集假目标干扰、字典学习、干扰检测、波形设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dictionary Learning and Waveform Design for Dense False Target Jamming Suppression
─ For linear frequency modulation (LFM) pulse radars, dense false targets generated by new system jamming seriously damage the performance of such radar systems. In order to avoid the influence of dense false target jamming, an anti-jamming strategy combining waveform design and sparse decomposition are proposed. Specifically, the radar system transmits a random pulse initial phase (RPIP) signal, and uses peak detection method to detect the deception jamming. The phase distribution of the RPIP signal is partially randomly perturbed for a jamming, and we use optimization algorithm to design a phase perturbed LFM (PPLFM) signal with good autocorrelation characteristics. Using the correlation function of the designed signal, the target sample set and the jamming sample set are constructed, and the target echo and the jamming signal are separated using designed dictionary learning method to achieve suppression of dense false target jamming and range side-lobes. The effectiveness of the proposed method is verified by numerical simulation, and the results proved that this proposed method maintains good anti-jamming performance under low signal-tonoise ratio (SNR). Index Terms ─ Anti-jamming, dense false target jamming, dictionary learning, jamming detection, waveform design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
28.60%
发文量
75
审稿时长
9 months
期刊介绍: The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study. The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed. A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected. The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.
期刊最新文献
Electromagnetic and Thermal Analysis of a 6/4 Induction Switched Reluctance Machine for Electric Vehicle Application Synthesis of Elliptical Antenna Array using Hybrid SSWOA Algorithm Temperature Controlled Terahertz Absorbers based on Omega Resonators A Simple Interference and Power-based Direction of Arrival Measuring System for Modern Communication A Wideband, High Gain and Low Sidelobe Array Antenna for Modern ETC Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1