{"title":"混合临界双操作系统平台能耗最小化的DVFS虚拟化","authors":"Takumi Komori, Yutaka Masuda, T. Ishihara","doi":"10.1109/RTCSA55878.2022.00020","DOIUrl":null,"url":null,"abstract":"A dual-OS platform can efficiently implement emerging mixed-criticality systems by consolidating a real-time OS (RTOS) and a general-purpose OS (GPOS). Although the dual-OS platform attracts increasing attention, it often suffers from energy inefficiency in the GPOS for guaranteeing real-time responses of the RTOS. This paper proposes an energy minimization method called DVFS virtualization, which allows running multiple DVFS policies dedicated to the RTOS and GPOS, respectively. The experimental evaluation using a commercial processor showed that the proposed hardware could change the supply voltage within 500 ns and reduce the energy consumption of typical applications by 60 % in the best case compared to conventional dual-OS platforms.","PeriodicalId":38446,"journal":{"name":"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)","volume":"13 1","pages":"128-137"},"PeriodicalIF":0.5000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DVFS Virtualization for Energy Minimization of Mixed-Criticality Dual-OS Platforms\",\"authors\":\"Takumi Komori, Yutaka Masuda, T. Ishihara\",\"doi\":\"10.1109/RTCSA55878.2022.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dual-OS platform can efficiently implement emerging mixed-criticality systems by consolidating a real-time OS (RTOS) and a general-purpose OS (GPOS). Although the dual-OS platform attracts increasing attention, it often suffers from energy inefficiency in the GPOS for guaranteeing real-time responses of the RTOS. This paper proposes an energy minimization method called DVFS virtualization, which allows running multiple DVFS policies dedicated to the RTOS and GPOS, respectively. The experimental evaluation using a commercial processor showed that the proposed hardware could change the supply voltage within 500 ns and reduce the energy consumption of typical applications by 60 % in the best case compared to conventional dual-OS platforms.\",\"PeriodicalId\":38446,\"journal\":{\"name\":\"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)\",\"volume\":\"13 1\",\"pages\":\"128-137\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTCSA55878.2022.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTCSA55878.2022.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
DVFS Virtualization for Energy Minimization of Mixed-Criticality Dual-OS Platforms
A dual-OS platform can efficiently implement emerging mixed-criticality systems by consolidating a real-time OS (RTOS) and a general-purpose OS (GPOS). Although the dual-OS platform attracts increasing attention, it often suffers from energy inefficiency in the GPOS for guaranteeing real-time responses of the RTOS. This paper proposes an energy minimization method called DVFS virtualization, which allows running multiple DVFS policies dedicated to the RTOS and GPOS, respectively. The experimental evaluation using a commercial processor showed that the proposed hardware could change the supply voltage within 500 ns and reduce the energy consumption of typical applications by 60 % in the best case compared to conventional dual-OS platforms.