{"title":"使用定制头部和躯干模拟器测量躯干、嘴唇和声道结构对言语指向性的影响","authors":"R. Blandin, Jingyan Geng, P. Birkholz","doi":"10.1051/aacus/2023035","DOIUrl":null,"url":null,"abstract":"The human voice is a directional sound source. This property has been explored for more than 200 years, mainly using measurements of human participants. Some efforts have been made to understand the anatomical parameters that influence speech directivity, e.g., the mouth opening, diffraction and reflections due to the head and torso, the lips and the vocal tract. However, these parameters have mostly been studied separately, without being integrated into a complete model or replica. The aim of this work was to study the combined influence of the torso, the lips and the vocal tract geometry on speech directivity. For this purpose, a simplified head and torso simulator was built; this simulator made it possible to vary these parameters independently. It consisted of two spheres representing the head and the torso into which vocal tract replicas with or without lips could be inserted. The directivity patterns were measured in an anechoic room with a turntable and a microphone that could be placed at different angular positions. Different effects such as torso diffraction and reflections, the correlation of the mouth dimensions with directionality, the higher-order modes and the increase in directionality due to the lips were confirmed and further documented. Interactions between the different parameters were found. It was observed that torso diffraction and reflections were enhanced by the presence of the lips, that they could be modified or masked by the effect of higher-order modes and that the lips tend to attenuate the effect of higher-order modes.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"45 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the influence of the torso, lips and vocal tract configuration on speech directivity using measurements from a custom head and torso simulator\",\"authors\":\"R. Blandin, Jingyan Geng, P. Birkholz\",\"doi\":\"10.1051/aacus/2023035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The human voice is a directional sound source. This property has been explored for more than 200 years, mainly using measurements of human participants. Some efforts have been made to understand the anatomical parameters that influence speech directivity, e.g., the mouth opening, diffraction and reflections due to the head and torso, the lips and the vocal tract. However, these parameters have mostly been studied separately, without being integrated into a complete model or replica. The aim of this work was to study the combined influence of the torso, the lips and the vocal tract geometry on speech directivity. For this purpose, a simplified head and torso simulator was built; this simulator made it possible to vary these parameters independently. It consisted of two spheres representing the head and the torso into which vocal tract replicas with or without lips could be inserted. The directivity patterns were measured in an anechoic room with a turntable and a microphone that could be placed at different angular positions. Different effects such as torso diffraction and reflections, the correlation of the mouth dimensions with directionality, the higher-order modes and the increase in directionality due to the lips were confirmed and further documented. Interactions between the different parameters were found. It was observed that torso diffraction and reflections were enhanced by the presence of the lips, that they could be modified or masked by the effect of higher-order modes and that the lips tend to attenuate the effect of higher-order modes.\",\"PeriodicalId\":48486,\"journal\":{\"name\":\"Acta Acustica\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Acustica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/aacus/2023035\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/aacus/2023035","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Investigation of the influence of the torso, lips and vocal tract configuration on speech directivity using measurements from a custom head and torso simulator
The human voice is a directional sound source. This property has been explored for more than 200 years, mainly using measurements of human participants. Some efforts have been made to understand the anatomical parameters that influence speech directivity, e.g., the mouth opening, diffraction and reflections due to the head and torso, the lips and the vocal tract. However, these parameters have mostly been studied separately, without being integrated into a complete model or replica. The aim of this work was to study the combined influence of the torso, the lips and the vocal tract geometry on speech directivity. For this purpose, a simplified head and torso simulator was built; this simulator made it possible to vary these parameters independently. It consisted of two spheres representing the head and the torso into which vocal tract replicas with or without lips could be inserted. The directivity patterns were measured in an anechoic room with a turntable and a microphone that could be placed at different angular positions. Different effects such as torso diffraction and reflections, the correlation of the mouth dimensions with directionality, the higher-order modes and the increase in directionality due to the lips were confirmed and further documented. Interactions between the different parameters were found. It was observed that torso diffraction and reflections were enhanced by the presence of the lips, that they could be modified or masked by the effect of higher-order modes and that the lips tend to attenuate the effect of higher-order modes.
期刊介绍:
Acta Acustica, the Journal of the European Acoustics Association (EAA).
After the publication of its Journal Acta Acustica from 1993 to 1995, the EAA published Acta Acustica united with Acustica from 1996 to 2019. From 2020, the EAA decided to publish a journal in full Open Access. See Article Processing charges.
Acta Acustica reports on original scientific research in acoustics and on engineering applications. The journal considers review papers, scientific papers, technical and applied papers, short communications, letters to the editor. From time to time, special issues and review articles are also published. For book reviews or doctoral thesis abstracts, please contact the Editor in Chief.