{"title":"用一般扩散方程分析相的析出,并与Vitek扩散模型比较","authors":"Chih-Chun Hsieh, Weite Wu","doi":"10.1155/2012/154617","DOIUrl":null,"url":null,"abstract":"This study performs a precipitation examination of the phase using the general diffusion equation with comparison to the Vitek model in dissimilar stainless steels during multipass welding. Experimental results demonstrate that the diffusivities (, , and ) of Cr, Ni, and Si are higher in -ferrite than (, , and ) in the phase, and that they facilitate the precipitation of the σ phase in the third pass fusion zone. The Vitek diffusion equation can be modified as follows: .","PeriodicalId":16342,"journal":{"name":"Journal of Metallurgy","volume":"246 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Precipitation of Phase Using General Diffusion Equation with Comparison to Vitek Diffusion Model in Dissimilar Stainless Steels\",\"authors\":\"Chih-Chun Hsieh, Weite Wu\",\"doi\":\"10.1155/2012/154617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study performs a precipitation examination of the phase using the general diffusion equation with comparison to the Vitek model in dissimilar stainless steels during multipass welding. Experimental results demonstrate that the diffusivities (, , and ) of Cr, Ni, and Si are higher in -ferrite than (, , and ) in the phase, and that they facilitate the precipitation of the σ phase in the third pass fusion zone. The Vitek diffusion equation can be modified as follows: .\",\"PeriodicalId\":16342,\"journal\":{\"name\":\"Journal of Metallurgy\",\"volume\":\"246 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Metallurgy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/154617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/154617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Precipitation of Phase Using General Diffusion Equation with Comparison to Vitek Diffusion Model in Dissimilar Stainless Steels
This study performs a precipitation examination of the phase using the general diffusion equation with comparison to the Vitek model in dissimilar stainless steels during multipass welding. Experimental results demonstrate that the diffusivities (, , and ) of Cr, Ni, and Si are higher in -ferrite than (, , and ) in the phase, and that they facilitate the precipitation of the σ phase in the third pass fusion zone. The Vitek diffusion equation can be modified as follows: .