{"title":"量子寄存器中具有光子发射的Schrödinger粒子非弹性散射的模拟","authors":"M. Ostrowski","doi":"10.24425/BPASTS.2020.134670","DOIUrl":null,"url":null,"abstract":"This paper investigates whether a quantum computer can efficiently simulate the non-elastic scattering of the Schrödinger particle on a stationary excitable shield. The return of the shield to the ground state is caused by photon emission. An algorithm is presented for simulating the time evolution of such a process, implemented on standard two-input gates. The algorithm is used for the computation of elastic and non-elastic scattering probabilities. The results obtained by our algorithm are compared with those obtained using the standard Cayley’s method.","PeriodicalId":55299,"journal":{"name":"Bulletin of the Polish Academy of Sciences-Technical Sciences","volume":"50 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulation of the Schrödinger particle non-elastic scattering with emission of photon in the quantum register\",\"authors\":\"M. Ostrowski\",\"doi\":\"10.24425/BPASTS.2020.134670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates whether a quantum computer can efficiently simulate the non-elastic scattering of the Schrödinger particle on a stationary excitable shield. The return of the shield to the ground state is caused by photon emission. An algorithm is presented for simulating the time evolution of such a process, implemented on standard two-input gates. The algorithm is used for the computation of elastic and non-elastic scattering probabilities. The results obtained by our algorithm are compared with those obtained using the standard Cayley’s method.\",\"PeriodicalId\":55299,\"journal\":{\"name\":\"Bulletin of the Polish Academy of Sciences-Technical Sciences\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Polish Academy of Sciences-Technical Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24425/BPASTS.2020.134670\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Polish Academy of Sciences-Technical Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/BPASTS.2020.134670","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Simulation of the Schrödinger particle non-elastic scattering with emission of photon in the quantum register
This paper investigates whether a quantum computer can efficiently simulate the non-elastic scattering of the Schrödinger particle on a stationary excitable shield. The return of the shield to the ground state is caused by photon emission. An algorithm is presented for simulating the time evolution of such a process, implemented on standard two-input gates. The algorithm is used for the computation of elastic and non-elastic scattering probabilities. The results obtained by our algorithm are compared with those obtained using the standard Cayley’s method.
期刊介绍:
The Bulletin of the Polish Academy of Sciences: Technical Sciences is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred:
Artificial and Computational Intelligence,
Biomedical Engineering and Biotechnology,
Civil Engineering,
Control, Informatics and Robotics,
Electronics, Telecommunication and Optoelectronics,
Mechanical and Aeronautical Engineering, Thermodynamics,
Material Science and Nanotechnology,
Power Systems and Power Electronics.