16Gb/s/引脚8Gb GDDR6 DRAM,带宽扩展技术,适用于高速应用

Kyu-Dong Hwang, Boram Kim, Sangyeon Byeon, Kyu-Young Kim, Daehan Kwon, Hyun-Bae Lee, Geun-Il Lee, Sang-Sic Yoon, Jin-Youp Cha, Soo-young Jang, Seung-Hun Lee, Yongsuk Joo, Gang-Sik Lee, Sung-Soo Xi, Soo-Bin Lim, Kyung-Ho Chu, Joohwan Cho, J. Chun, Jonghoon Oh, Jinkook Kim, S. Lee
{"title":"16Gb/s/引脚8Gb GDDR6 DRAM,带宽扩展技术,适用于高速应用","authors":"Kyu-Dong Hwang, Boram Kim, Sangyeon Byeon, Kyu-Young Kim, Daehan Kwon, Hyun-Bae Lee, Geun-Il Lee, Sang-Sic Yoon, Jin-Youp Cha, Soo-young Jang, Seung-Hun Lee, Yongsuk Joo, Gang-Sik Lee, Sung-Soo Xi, Soo-Bin Lim, Kyung-Ho Chu, Joohwan Cho, J. Chun, Jonghoon Oh, Jinkook Kim, S. Lee","doi":"10.1109/ISSCC.2018.8310258","DOIUrl":null,"url":null,"abstract":"Recently the demand for high-bandwidth graphic DRAM, for game consoles and graphic cards, has dramatically increased due to the development of virtual reality, artificial intelligence, deep learning, autonomous driving cars, etc. These applications require greater data transfer speeds than pervious devices, GDDR5 [1] and GDDR5X [2], which are limited to 12Gb/s/pin. This paper introduces an 8Gb GDDR6 operating at up to 16Gb/s/pin. To exceed the prior speed limit various bandwidth extension techniques are proposed. WCK is driven with a dividing scheme to overcome speed limitations and to reduce power consumption. In addition, a dual-band architecture with different types of nibble drivers is proposed in order to cover stability of CML-to-CMOS in all frequency regions; CML nibble is used for high-speed, while CMOS nibble is used for low-speed. A DC-split scheme is implemented for duty-cycle correction and skew compensation. The bandwidth of the high-frequency divider is extended by using a proposed mode-changed flip-flop. The receiver uses a loop-unrolled one-tap decision-feedback equalizer (DFE) designed to eliminate channel inter-symbol interference (ISI). A two-stage pre-amplifier is also used for bandwidth extension. The transmitter uses a 4:1 multiplexer using a half-rate sampler, where a 1UI pulse is unnecessary to minimize the full-rate operation. To secure on-chip signal transmission characteristic, the bandwidth limitation of transistor in a DRAM process is extended by adopting an on-chip feedback EQ filter.","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"240 1","pages":"210-212"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A 16Gb/s/pin 8Gb GDDR6 DRAM with bandwidth extension techniques for high-speed applications\",\"authors\":\"Kyu-Dong Hwang, Boram Kim, Sangyeon Byeon, Kyu-Young Kim, Daehan Kwon, Hyun-Bae Lee, Geun-Il Lee, Sang-Sic Yoon, Jin-Youp Cha, Soo-young Jang, Seung-Hun Lee, Yongsuk Joo, Gang-Sik Lee, Sung-Soo Xi, Soo-Bin Lim, Kyung-Ho Chu, Joohwan Cho, J. Chun, Jonghoon Oh, Jinkook Kim, S. Lee\",\"doi\":\"10.1109/ISSCC.2018.8310258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently the demand for high-bandwidth graphic DRAM, for game consoles and graphic cards, has dramatically increased due to the development of virtual reality, artificial intelligence, deep learning, autonomous driving cars, etc. These applications require greater data transfer speeds than pervious devices, GDDR5 [1] and GDDR5X [2], which are limited to 12Gb/s/pin. This paper introduces an 8Gb GDDR6 operating at up to 16Gb/s/pin. To exceed the prior speed limit various bandwidth extension techniques are proposed. WCK is driven with a dividing scheme to overcome speed limitations and to reduce power consumption. In addition, a dual-band architecture with different types of nibble drivers is proposed in order to cover stability of CML-to-CMOS in all frequency regions; CML nibble is used for high-speed, while CMOS nibble is used for low-speed. A DC-split scheme is implemented for duty-cycle correction and skew compensation. The bandwidth of the high-frequency divider is extended by using a proposed mode-changed flip-flop. The receiver uses a loop-unrolled one-tap decision-feedback equalizer (DFE) designed to eliminate channel inter-symbol interference (ISI). A two-stage pre-amplifier is also used for bandwidth extension. The transmitter uses a 4:1 multiplexer using a half-rate sampler, where a 1UI pulse is unnecessary to minimize the full-rate operation. To secure on-chip signal transmission characteristic, the bandwidth limitation of transistor in a DRAM process is extended by adopting an on-chip feedback EQ filter.\",\"PeriodicalId\":6617,\"journal\":{\"name\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"volume\":\"240 1\",\"pages\":\"210-212\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2018.8310258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2018.8310258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

最近,由于虚拟现实、人工智能、深度学习、自动驾驶汽车等的发展,游戏机和显卡对高带宽图形DRAM的需求急剧增加。这些应用需要比以前的设备GDDR5[1]和GDDR5X[2]更高的数据传输速度,这些设备限制在12Gb/s/pin。本文介绍了一种8Gb的GDDR6,其工作速率高达16Gb/s/pin。为了超越先前的速度限制,提出了各种带宽扩展技术。WCK是驱动与分割方案,以克服速度限制,并降低功耗。此外,为了覆盖CML-to-CMOS在所有频率区域的稳定性,提出了具有不同类型蚕食驱动器的双频结构;CML蚕食用于高速,CMOS蚕食用于低速。采用直流分路方案进行占空比校正和偏斜补偿。高频分频器的带宽通过使用一种提出的变模触发器得到扩展。接收机采用循环展开的单抽头决策反馈均衡器(DFE),旨在消除信道符号间干扰(ISI)。两级前置放大器也用于带宽扩展。发射器使用使用半速率采样器的4:1多路复用器,其中不需要1UI脉冲来最小化全速率操作。为了保证片上信号的传输特性,采用片上反馈EQ滤波器扩展了DRAM工艺中晶体管的带宽限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A 16Gb/s/pin 8Gb GDDR6 DRAM with bandwidth extension techniques for high-speed applications
Recently the demand for high-bandwidth graphic DRAM, for game consoles and graphic cards, has dramatically increased due to the development of virtual reality, artificial intelligence, deep learning, autonomous driving cars, etc. These applications require greater data transfer speeds than pervious devices, GDDR5 [1] and GDDR5X [2], which are limited to 12Gb/s/pin. This paper introduces an 8Gb GDDR6 operating at up to 16Gb/s/pin. To exceed the prior speed limit various bandwidth extension techniques are proposed. WCK is driven with a dividing scheme to overcome speed limitations and to reduce power consumption. In addition, a dual-band architecture with different types of nibble drivers is proposed in order to cover stability of CML-to-CMOS in all frequency regions; CML nibble is used for high-speed, while CMOS nibble is used for low-speed. A DC-split scheme is implemented for duty-cycle correction and skew compensation. The bandwidth of the high-frequency divider is extended by using a proposed mode-changed flip-flop. The receiver uses a loop-unrolled one-tap decision-feedback equalizer (DFE) designed to eliminate channel inter-symbol interference (ISI). A two-stage pre-amplifier is also used for bandwidth extension. The transmitter uses a 4:1 multiplexer using a half-rate sampler, where a 1UI pulse is unnecessary to minimize the full-rate operation. To secure on-chip signal transmission characteristic, the bandwidth limitation of transistor in a DRAM process is extended by adopting an on-chip feedback EQ filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EE1: Student research preview (SRP) A 512Gb 3b/Cell 3D flash memory on a 96-word-line-layer technology Single-chip reduced-wire active catheter system with programmable transmit beamforming and receive time-division multiplexing for intracardiac echocardiography A 2.5nJ duty-cycled bridge-to-digital converter integrated in a 13mm3 pressure-sensing system A 36.3-to-38.2GHz −216dBc/Hz2 40nm CMOS fractional-N FMCW chirp synthesizer PLL with a continuous-time bandpass delta-sigma time-to-digital converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1