{"title":"基于机器学习的传感器数据预测增强环境感知","authors":"Marta Narigina, Arturs Kempelis, A. Romānovs","doi":"10.37394/23202.2023.22.55","DOIUrl":null,"url":null,"abstract":"This article presents a study that explores forecasting methods for multivariate time series data, which was collected from sensors monitoring CO2, temperature, and humidity. The article covers the preprocessing stages, such as dealing with missing values, data normalization, and organizing the time-series data into a suitable format for the model. This study aimed to evaluate Long Short-Term Memory (LSTM) networks, Convolutional Neural Networks (CNNs), Vector Autoregressive (VAR) models, Artificial Neural Networks (ANNs), and Random Forest performance in terms of forecasting different environmental dataset parameters. After implementing and testing fifteen different sensor forecast model combinations, it was concluded that the Long Short-Term Memory and Vector Autoregression models produced the most accurate results. The highest accuracy for all models was achieved when forecasting temperature data with CO2 and humidity as inputs. The least accurate models forecasted CO2 levels based on temperature and humidity.","PeriodicalId":39422,"journal":{"name":"WSEAS Transactions on Systems and Control","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Learning-based Forecasting of Sensor Data for Enhanced Environmental Sensing\",\"authors\":\"Marta Narigina, Arturs Kempelis, A. Romānovs\",\"doi\":\"10.37394/23202.2023.22.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a study that explores forecasting methods for multivariate time series data, which was collected from sensors monitoring CO2, temperature, and humidity. The article covers the preprocessing stages, such as dealing with missing values, data normalization, and organizing the time-series data into a suitable format for the model. This study aimed to evaluate Long Short-Term Memory (LSTM) networks, Convolutional Neural Networks (CNNs), Vector Autoregressive (VAR) models, Artificial Neural Networks (ANNs), and Random Forest performance in terms of forecasting different environmental dataset parameters. After implementing and testing fifteen different sensor forecast model combinations, it was concluded that the Long Short-Term Memory and Vector Autoregression models produced the most accurate results. The highest accuracy for all models was achieved when forecasting temperature data with CO2 and humidity as inputs. The least accurate models forecasted CO2 levels based on temperature and humidity.\",\"PeriodicalId\":39422,\"journal\":{\"name\":\"WSEAS Transactions on Systems and Control\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23202.2023.22.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23202.2023.22.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Machine Learning-based Forecasting of Sensor Data for Enhanced Environmental Sensing
This article presents a study that explores forecasting methods for multivariate time series data, which was collected from sensors monitoring CO2, temperature, and humidity. The article covers the preprocessing stages, such as dealing with missing values, data normalization, and organizing the time-series data into a suitable format for the model. This study aimed to evaluate Long Short-Term Memory (LSTM) networks, Convolutional Neural Networks (CNNs), Vector Autoregressive (VAR) models, Artificial Neural Networks (ANNs), and Random Forest performance in terms of forecasting different environmental dataset parameters. After implementing and testing fifteen different sensor forecast model combinations, it was concluded that the Long Short-Term Memory and Vector Autoregression models produced the most accurate results. The highest accuracy for all models was achieved when forecasting temperature data with CO2 and humidity as inputs. The least accurate models forecasted CO2 levels based on temperature and humidity.
期刊介绍:
WSEAS Transactions on Systems and Control publishes original research papers relating to systems theory and automatic control. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with systems theory, dynamical systems, linear and non-linear control, intelligent control, robotics and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.