{"title":"带地标的应变最小化双曲网络嵌入","authors":"Martin Keller-Ressel, Stephanie Nargang","doi":"10.48550/arXiv.2207.06775","DOIUrl":null,"url":null,"abstract":"\n We introduce L-hydra (landmarked hyperbolic distance recovery and approximation), a method for embedding network- or distance-based data into hyperbolic space, which requires only the distance measurements to a few ‘landmark nodes’. This landmark heuristic makes L-hydra applicable to large-scale graphs and improves upon previously introduced methods. As a mathematical justification, we show that a point configuration in $d$-dimensional hyperbolic space can be perfectly recovered (up to isometry) from distance measurements to just $d+1$ landmarks. We also show that L-hydra solves a two-stage strain-minimization problem, similar to our previous (unlandmarked) method ‘hydra’. Testing on real network data, we show that L-hydra is an order of magnitude faster than the existing hyperbolic embedding methods and scales linearly in the number of nodes. While the embedding error of L-hydra is higher than the error of the existing methods, we introduce an extension, L-hydra+, which outperforms the existing methods in both runtime and embedding quality.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain-Minimizing Hyperbolic Network Embeddings with Landmarks\",\"authors\":\"Martin Keller-Ressel, Stephanie Nargang\",\"doi\":\"10.48550/arXiv.2207.06775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We introduce L-hydra (landmarked hyperbolic distance recovery and approximation), a method for embedding network- or distance-based data into hyperbolic space, which requires only the distance measurements to a few ‘landmark nodes’. This landmark heuristic makes L-hydra applicable to large-scale graphs and improves upon previously introduced methods. As a mathematical justification, we show that a point configuration in $d$-dimensional hyperbolic space can be perfectly recovered (up to isometry) from distance measurements to just $d+1$ landmarks. We also show that L-hydra solves a two-stage strain-minimization problem, similar to our previous (unlandmarked) method ‘hydra’. Testing on real network data, we show that L-hydra is an order of magnitude faster than the existing hyperbolic embedding methods and scales linearly in the number of nodes. While the embedding error of L-hydra is higher than the error of the existing methods, we introduce an extension, L-hydra+, which outperforms the existing methods in both runtime and embedding quality.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2207.06775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.06775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Strain-Minimizing Hyperbolic Network Embeddings with Landmarks
We introduce L-hydra (landmarked hyperbolic distance recovery and approximation), a method for embedding network- or distance-based data into hyperbolic space, which requires only the distance measurements to a few ‘landmark nodes’. This landmark heuristic makes L-hydra applicable to large-scale graphs and improves upon previously introduced methods. As a mathematical justification, we show that a point configuration in $d$-dimensional hyperbolic space can be perfectly recovered (up to isometry) from distance measurements to just $d+1$ landmarks. We also show that L-hydra solves a two-stage strain-minimization problem, similar to our previous (unlandmarked) method ‘hydra’. Testing on real network data, we show that L-hydra is an order of magnitude faster than the existing hyperbolic embedding methods and scales linearly in the number of nodes. While the embedding error of L-hydra is higher than the error of the existing methods, we introduce an extension, L-hydra+, which outperforms the existing methods in both runtime and embedding quality.