{"title":"员工穿梭巴士路线问题:个案研究","authors":"Gaye Peker","doi":"10.31590/ejosat.1173057","DOIUrl":null,"url":null,"abstract":"This paper describes the real-life application of a personnel service shuttle routing problem. The problem in question is a type of vehicle routing problem with special constraints. To solve the problem, a mathematical model was developed, which aims to minimize the total travel time of employees, including the walking times to the shuttle-stops and the times spent on the shuttles. These times were added in the model by considering the times between the designated stops, the times each shuttle spends on each stop and the total travel times of the shuttles from the starting points to the destination point. The goal programming model was coded and solved using the commercial solver IBM ILOG CPLEX Optimization Studio. The actual times between the shuttle bus stops and the employee walking times were calculated according to the real-life data provided by the company. The walking times of the employees to the bus stops were also regulated via the inclusion of some set covering constraints in the model. When the numerical results from the model were compared to the current practice of the company, it has been observed that the savings in total travel time were quite significant.","PeriodicalId":12068,"journal":{"name":"European Journal of Science and Technology","volume":"269 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Employee Shuttle Bus Routing Problem: A Case Study\",\"authors\":\"Gaye Peker\",\"doi\":\"10.31590/ejosat.1173057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the real-life application of a personnel service shuttle routing problem. The problem in question is a type of vehicle routing problem with special constraints. To solve the problem, a mathematical model was developed, which aims to minimize the total travel time of employees, including the walking times to the shuttle-stops and the times spent on the shuttles. These times were added in the model by considering the times between the designated stops, the times each shuttle spends on each stop and the total travel times of the shuttles from the starting points to the destination point. The goal programming model was coded and solved using the commercial solver IBM ILOG CPLEX Optimization Studio. The actual times between the shuttle bus stops and the employee walking times were calculated according to the real-life data provided by the company. The walking times of the employees to the bus stops were also regulated via the inclusion of some set covering constraints in the model. When the numerical results from the model were compared to the current practice of the company, it has been observed that the savings in total travel time were quite significant.\",\"PeriodicalId\":12068,\"journal\":{\"name\":\"European Journal of Science and Technology\",\"volume\":\"269 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31590/ejosat.1173057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31590/ejosat.1173057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Employee Shuttle Bus Routing Problem: A Case Study
This paper describes the real-life application of a personnel service shuttle routing problem. The problem in question is a type of vehicle routing problem with special constraints. To solve the problem, a mathematical model was developed, which aims to minimize the total travel time of employees, including the walking times to the shuttle-stops and the times spent on the shuttles. These times were added in the model by considering the times between the designated stops, the times each shuttle spends on each stop and the total travel times of the shuttles from the starting points to the destination point. The goal programming model was coded and solved using the commercial solver IBM ILOG CPLEX Optimization Studio. The actual times between the shuttle bus stops and the employee walking times were calculated according to the real-life data provided by the company. The walking times of the employees to the bus stops were also regulated via the inclusion of some set covering constraints in the model. When the numerical results from the model were compared to the current practice of the company, it has been observed that the savings in total travel time were quite significant.