离散模糊系统的h∞输出反馈控制设计

IF 2 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Optimal Control Applications & Methods Pub Date : 2009-08-01 DOI:10.1002/oca.871
Jinhui Zhang, Yuanqing Xia, P. Shi, J. Qiu
{"title":"离散模糊系统的h∞输出反馈控制设计","authors":"Jinhui Zhang, Yuanqing Xia, P. Shi, J. Qiu","doi":"10.1002/oca.871","DOIUrl":null,"url":null,"abstract":"This paper investigates the relaxed non-quadratic stability conditions, fuzzy observer designs and ∞ controller designs for discrete-time Takagi-Sugeno fuzzy systems based on a relaxed approach in which fuzzy Lyapunov functions are used. First, a new relaxed condition of non-quadratic stability is presented, which is shown to be useful in designing fuzzy controller and observer. Second, new fuzzy observers based on the relaxed non-quadratic stability conditions have been proposed. Then, a sufficient linear matrix inequality (LMI)-type condition is proposed to guarantee the existence of the ∞ controllers based on the fuzzy observers designed. It is shown that the controller and observer parameters can be obtained by solving a set of LMIs that are numerically feasible with commercially available software. Finally, the effectiveness and less conservativeness of the proposed approach are demonstrated by two examples","PeriodicalId":54672,"journal":{"name":"Optimal Control Applications & Methods","volume":"93 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2009-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"H-infinity output feedback control design for discrete-time fuzzy systems\",\"authors\":\"Jinhui Zhang, Yuanqing Xia, P. Shi, J. Qiu\",\"doi\":\"10.1002/oca.871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the relaxed non-quadratic stability conditions, fuzzy observer designs and ∞ controller designs for discrete-time Takagi-Sugeno fuzzy systems based on a relaxed approach in which fuzzy Lyapunov functions are used. First, a new relaxed condition of non-quadratic stability is presented, which is shown to be useful in designing fuzzy controller and observer. Second, new fuzzy observers based on the relaxed non-quadratic stability conditions have been proposed. Then, a sufficient linear matrix inequality (LMI)-type condition is proposed to guarantee the existence of the ∞ controllers based on the fuzzy observers designed. It is shown that the controller and observer parameters can be obtained by solving a set of LMIs that are numerically feasible with commercially available software. Finally, the effectiveness and less conservativeness of the proposed approach are demonstrated by two examples\",\"PeriodicalId\":54672,\"journal\":{\"name\":\"Optimal Control Applications & Methods\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2009-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimal Control Applications & Methods\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/oca.871\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications & Methods","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/oca.871","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 10

摘要

本文研究了离散时间Takagi-Sugeno模糊系统的松弛非二次稳定性条件、模糊观测器设计和∞控制器设计。首先,提出了一种新的非二次稳定性松弛条件,该松弛条件对模糊控制器和观测器的设计具有指导意义。其次,提出了基于松弛非二次稳定性条件的模糊观测器。然后,基于所设计的模糊观测器,给出了保证∞控制器存在的充分线性矩阵不等式(LMI)型条件。结果表明,控制器和观测器的参数可以通过求解一组在数值上可行的lmi来获得。最后,通过两个算例验证了该方法的有效性和较低的保守性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
H-infinity output feedback control design for discrete-time fuzzy systems
This paper investigates the relaxed non-quadratic stability conditions, fuzzy observer designs and ∞ controller designs for discrete-time Takagi-Sugeno fuzzy systems based on a relaxed approach in which fuzzy Lyapunov functions are used. First, a new relaxed condition of non-quadratic stability is presented, which is shown to be useful in designing fuzzy controller and observer. Second, new fuzzy observers based on the relaxed non-quadratic stability conditions have been proposed. Then, a sufficient linear matrix inequality (LMI)-type condition is proposed to guarantee the existence of the ∞ controllers based on the fuzzy observers designed. It is shown that the controller and observer parameters can be obtained by solving a set of LMIs that are numerically feasible with commercially available software. Finally, the effectiveness and less conservativeness of the proposed approach are demonstrated by two examples
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optimal Control Applications & Methods
Optimal Control Applications & Methods 工程技术-应用数学
CiteScore
3.90
自引率
11.10%
发文量
108
审稿时长
3 months
期刊介绍: Optimal Control Applications & Methods provides a forum for papers on the full range of optimal and optimization based control theory and related control design methods. The aim is to encourage new developments in control theory and design methodologies that will lead to real advances in control applications. Papers are also encouraged on the development, comparison and testing of computational algorithms for solving optimal control and optimization problems. The scope also includes papers on optimal estimation and filtering methods which have control related applications. Finally, it will provide a focus for interesting optimal control design studies and report real applications experience covering problems in implementation and robustness.
期刊最新文献
An optimal control model for COVID-19, zika, dengue, and chikungunya co-dynamics with reinfection. Analysis of COVID-19 and comorbidity co-infection model with optimal control. Prediction of asymptomatic COVID-19 infections based on complex network. Reachability Set Sufficient Optimality Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1