W. Catterall, Edward Perez-Reyes, Terrance P. Snutch, Joerg Striessnig
{"title":"GtoPdb v.2023.1中的电压门控钙通道(CaV)","authors":"W. Catterall, Edward Perez-Reyes, Terrance P. Snutch, Joerg Striessnig","doi":"10.2218/gtopdb/f80/2023.1","DOIUrl":null,"url":null,"abstract":"Ca2+ channels are voltage-gated ion channels present in the membrane of most excitable cells. The nomenclature for Ca2+channels was proposed by [131] and approved by the NC-IUPHAR Subcommittee on Ca2+ channels [72]. Most Ca2+ channels form hetero-oligomeric complexes. The α1 subunit is pore-forming and provides the binding site(s) for practically all agonists and antagonists. The 10 cloned α1-subunits can be grouped into three families: (1) the high-voltage activated dihydropyridine-sensitive (L-type, CaV1.x) channels; (2) the high- to moderate-voltage activated dihydropyridine-insensitive (CaV2.x) channels and (3) the low-voltage-activated (T-type, CaV3.x) channels. Each α1 subunit has four homologous repeats (I-IV), each repeat having six transmembrane domains (S1-S6) and a pore-forming region between S5 and S6. Voltage-dependent gating is driven by the membrane spanning S4 segment, which contains highly conserved positive charges that respond to changes in membrane potential. All of the α1-subunit genes give rise to alternatively spliced products. At least for high-voltage activated channels, it is likely that native channels comprise co-assemblies of α1, β and α2-δ subunits. The γ subunits have not been proven to associate with channels other than the α1s skeletal muscle Cav1.1 channel. The α2-δ1 and α2-δ2 subunits bind gabapentin and pregabalin.","PeriodicalId":14617,"journal":{"name":"IUPHAR/BPS Guide to Pharmacology CITE","volume":"271 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voltage-gated calcium channels (CaV) in GtoPdb v.2023.1\",\"authors\":\"W. Catterall, Edward Perez-Reyes, Terrance P. Snutch, Joerg Striessnig\",\"doi\":\"10.2218/gtopdb/f80/2023.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ca2+ channels are voltage-gated ion channels present in the membrane of most excitable cells. The nomenclature for Ca2+channels was proposed by [131] and approved by the NC-IUPHAR Subcommittee on Ca2+ channels [72]. Most Ca2+ channels form hetero-oligomeric complexes. The α1 subunit is pore-forming and provides the binding site(s) for practically all agonists and antagonists. The 10 cloned α1-subunits can be grouped into three families: (1) the high-voltage activated dihydropyridine-sensitive (L-type, CaV1.x) channels; (2) the high- to moderate-voltage activated dihydropyridine-insensitive (CaV2.x) channels and (3) the low-voltage-activated (T-type, CaV3.x) channels. Each α1 subunit has four homologous repeats (I-IV), each repeat having six transmembrane domains (S1-S6) and a pore-forming region between S5 and S6. Voltage-dependent gating is driven by the membrane spanning S4 segment, which contains highly conserved positive charges that respond to changes in membrane potential. All of the α1-subunit genes give rise to alternatively spliced products. At least for high-voltage activated channels, it is likely that native channels comprise co-assemblies of α1, β and α2-δ subunits. The γ subunits have not been proven to associate with channels other than the α1s skeletal muscle Cav1.1 channel. The α2-δ1 and α2-δ2 subunits bind gabapentin and pregabalin.\",\"PeriodicalId\":14617,\"journal\":{\"name\":\"IUPHAR/BPS Guide to Pharmacology CITE\",\"volume\":\"271 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IUPHAR/BPS Guide to Pharmacology CITE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2218/gtopdb/f80/2023.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUPHAR/BPS Guide to Pharmacology CITE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2218/gtopdb/f80/2023.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Voltage-gated calcium channels (CaV) in GtoPdb v.2023.1
Ca2+ channels are voltage-gated ion channels present in the membrane of most excitable cells. The nomenclature for Ca2+channels was proposed by [131] and approved by the NC-IUPHAR Subcommittee on Ca2+ channels [72]. Most Ca2+ channels form hetero-oligomeric complexes. The α1 subunit is pore-forming and provides the binding site(s) for practically all agonists and antagonists. The 10 cloned α1-subunits can be grouped into three families: (1) the high-voltage activated dihydropyridine-sensitive (L-type, CaV1.x) channels; (2) the high- to moderate-voltage activated dihydropyridine-insensitive (CaV2.x) channels and (3) the low-voltage-activated (T-type, CaV3.x) channels. Each α1 subunit has four homologous repeats (I-IV), each repeat having six transmembrane domains (S1-S6) and a pore-forming region between S5 and S6. Voltage-dependent gating is driven by the membrane spanning S4 segment, which contains highly conserved positive charges that respond to changes in membrane potential. All of the α1-subunit genes give rise to alternatively spliced products. At least for high-voltage activated channels, it is likely that native channels comprise co-assemblies of α1, β and α2-δ subunits. The γ subunits have not been proven to associate with channels other than the α1s skeletal muscle Cav1.1 channel. The α2-δ1 and α2-δ2 subunits bind gabapentin and pregabalin.