具有改进阻隔性能的食品包装用ldpe纳米粘土薄膜

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Journal of Plastic Film & Sheeting Pub Date : 2023-01-12 DOI:10.1177/87560879221151190
C. Barros, Sónia Miranda, Olga Castro, O. Carneiro, AV Machado
{"title":"具有改进阻隔性能的食品包装用ldpe纳米粘土薄膜","authors":"C. Barros, Sónia Miranda, Olga Castro, O. Carneiro, AV Machado","doi":"10.1177/87560879221151190","DOIUrl":null,"url":null,"abstract":"This study focuses on the development of low-density polyethylene matrix nanocomposite films for food packaging industry and aims at improving low-density polyethylene oxygen barrier properties while maintaining other relevant characteristics, such as processability, easy post-processing, optical and mechanical properties. low-density polyethylene nanocomposites, with 1 and 2.5 wt.% nanoclay (NC) and also compatibilized with 5 wt.% polyethylene grafted with maleic anhydride (PE-g-MA), were prepared and used to produce blown films. The nanocomposites were characterized in terms of their morphology, thermal, rheological, mechanical, barrier and optical properties, through scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), rheological measurements, tensile tests, water vapor transmission, oxygen permeability tests and spectrophotometry. The results demonstrated good NC dispersion in the polymer matrix and decreased oxygen permeability in the compatibilized nanocomposite films. All the other properties did not significantly change when compared to neat low-density polyethylene. Overall, the film properties were improved with the added nanoclay and PE-g-MA and, have potential for food packaging.","PeriodicalId":16823,"journal":{"name":"Journal of Plastic Film & Sheeting","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"LDPE-Nanoclay films for food packaging with improved barrier properties\",\"authors\":\"C. Barros, Sónia Miranda, Olga Castro, O. Carneiro, AV Machado\",\"doi\":\"10.1177/87560879221151190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on the development of low-density polyethylene matrix nanocomposite films for food packaging industry and aims at improving low-density polyethylene oxygen barrier properties while maintaining other relevant characteristics, such as processability, easy post-processing, optical and mechanical properties. low-density polyethylene nanocomposites, with 1 and 2.5 wt.% nanoclay (NC) and also compatibilized with 5 wt.% polyethylene grafted with maleic anhydride (PE-g-MA), were prepared and used to produce blown films. The nanocomposites were characterized in terms of their morphology, thermal, rheological, mechanical, barrier and optical properties, through scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), rheological measurements, tensile tests, water vapor transmission, oxygen permeability tests and spectrophotometry. The results demonstrated good NC dispersion in the polymer matrix and decreased oxygen permeability in the compatibilized nanocomposite films. All the other properties did not significantly change when compared to neat low-density polyethylene. Overall, the film properties were improved with the added nanoclay and PE-g-MA and, have potential for food packaging.\",\"PeriodicalId\":16823,\"journal\":{\"name\":\"Journal of Plastic Film & Sheeting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plastic Film & Sheeting\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/87560879221151190\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plastic Film & Sheeting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/87560879221151190","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 1

摘要

本研究的重点是开发用于食品包装工业的低密度聚乙烯基纳米复合薄膜,旨在提高低密度聚乙烯的阻氧性能,同时保持其他相关特性,如可加工性、后处理便利性、光学和机械性能。制备了低密度聚乙烯纳米复合材料,分别含有1和2.5 wt.%的纳米粘土(NC)和5 wt.%的聚乙烯接枝马来酸酐(PE-g-MA),并用于制备吹膜。通过扫描电子显微镜(SEM)、x射线衍射仪(XRD)、差示扫描量热仪(DSC)、流变学测试、拉伸测试、水蒸气透射率测试、氧渗透性测试和分光光度法对纳米复合材料的形貌、热、流变、力学、势势和光学性能进行了表征。结果表明,纳米复合材料在聚合物基体中具有良好的NC分散性,其氧渗透性降低。与纯低密度聚乙烯相比,所有其他性能没有显著变化。总的来说,添加纳米粘土和PE-g-MA后,薄膜的性能得到了改善,具有食品包装的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LDPE-Nanoclay films for food packaging with improved barrier properties
This study focuses on the development of low-density polyethylene matrix nanocomposite films for food packaging industry and aims at improving low-density polyethylene oxygen barrier properties while maintaining other relevant characteristics, such as processability, easy post-processing, optical and mechanical properties. low-density polyethylene nanocomposites, with 1 and 2.5 wt.% nanoclay (NC) and also compatibilized with 5 wt.% polyethylene grafted with maleic anhydride (PE-g-MA), were prepared and used to produce blown films. The nanocomposites were characterized in terms of their morphology, thermal, rheological, mechanical, barrier and optical properties, through scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), rheological measurements, tensile tests, water vapor transmission, oxygen permeability tests and spectrophotometry. The results demonstrated good NC dispersion in the polymer matrix and decreased oxygen permeability in the compatibilized nanocomposite films. All the other properties did not significantly change when compared to neat low-density polyethylene. Overall, the film properties were improved with the added nanoclay and PE-g-MA and, have potential for food packaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Plastic Film & Sheeting
Journal of Plastic Film & Sheeting 工程技术-材料科学:膜
CiteScore
6.00
自引率
16.10%
发文量
33
审稿时长
>12 weeks
期刊介绍: The Journal of Plastic Film and Sheeting improves communication concerning plastic film and sheeting with major emphasis on the propogation of knowledge which will serve to advance the science and technology of these products and thus better serve industry and the ultimate consumer. The journal reports on the wide variety of advances that are rapidly taking place in the technology of plastic film and sheeting. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Effects of Lithium bis(trifluoromethanesulfonyl)imide loading on thermal, mechanical and ion conducting properties of specialty interlayer films derived from scrap Polyvinyl butyral Industry News Vol 40(3) Making the most from measuring counts Coating of micropolar fluid during non-isothermal reverse roll coating phenomena Partially phosphorylated poly(vinyl alcohol) – A promising candidate in corrosion protection of magnesium for the biomedical industry?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1