J. Lea, Connor J. Shiggins, S. Brough, S. Livingstone, R. McNabb
{"title":"谷歌Earth Engine中的ArcticDEM:覆盖冰川环境的多时相数据快速分析工具","authors":"J. Lea, Connor J. Shiggins, S. Brough, S. Livingstone, R. McNabb","doi":"10.5194/EGUSPHERE-EGU21-7958","DOIUrl":null,"url":null,"abstract":"ArcticDEM data products include timestamped high spatial resolution (2 and 10 m) digital elevations models (DEMs) covering the period 2009-2017, offering the potential for monitoring ice surface change, structural evolution, geomorphological and proglacial change. However, their varying quality, spatial and temporal data coverage, large file size and requirement for coregistration provide challenges to user accessibility and interrogation of these datasets. Inclusion of these data in the cloud computing based Google Earth Engine (GEE) platform provides opportunities for rapid analysis, though poses its own barriers to access for users through the necessity for familiarity with either JavaScript or Python coding environments. Here we present tools that allow ArcticDEM data to be rapidly queried by users with no coding background through an intuitive graphical user interface, with the aim of improving the accessibility of these datasets for the glacial and earth surface process communities.","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ArcticDEM in Google Earth Engine: tools for rapid analysis of multi-temporal data covering glacial environments\",\"authors\":\"J. Lea, Connor J. Shiggins, S. Brough, S. Livingstone, R. McNabb\",\"doi\":\"10.5194/EGUSPHERE-EGU21-7958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ArcticDEM data products include timestamped high spatial resolution (2 and 10 m) digital elevations models (DEMs) covering the period 2009-2017, offering the potential for monitoring ice surface change, structural evolution, geomorphological and proglacial change. However, their varying quality, spatial and temporal data coverage, large file size and requirement for coregistration provide challenges to user accessibility and interrogation of these datasets. Inclusion of these data in the cloud computing based Google Earth Engine (GEE) platform provides opportunities for rapid analysis, though poses its own barriers to access for users through the necessity for familiarity with either JavaScript or Python coding environments. Here we present tools that allow ArcticDEM data to be rapidly queried by users with no coding background through an intuitive graphical user interface, with the aim of improving the accessibility of these datasets for the glacial and earth surface process communities.\",\"PeriodicalId\":22413,\"journal\":{\"name\":\"The EGU General Assembly\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The EGU General Assembly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/EGUSPHERE-EGU21-7958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EGU General Assembly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/EGUSPHERE-EGU21-7958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ArcticDEM in Google Earth Engine: tools for rapid analysis of multi-temporal data covering glacial environments
ArcticDEM data products include timestamped high spatial resolution (2 and 10 m) digital elevations models (DEMs) covering the period 2009-2017, offering the potential for monitoring ice surface change, structural evolution, geomorphological and proglacial change. However, their varying quality, spatial and temporal data coverage, large file size and requirement for coregistration provide challenges to user accessibility and interrogation of these datasets. Inclusion of these data in the cloud computing based Google Earth Engine (GEE) platform provides opportunities for rapid analysis, though poses its own barriers to access for users through the necessity for familiarity with either JavaScript or Python coding environments. Here we present tools that allow ArcticDEM data to be rapidly queried by users with no coding background through an intuitive graphical user interface, with the aim of improving the accessibility of these datasets for the glacial and earth surface process communities.