谷歌Earth Engine中的ArcticDEM:覆盖冰川环境的多时相数据快速分析工具

J. Lea, Connor J. Shiggins, S. Brough, S. Livingstone, R. McNabb
{"title":"谷歌Earth Engine中的ArcticDEM:覆盖冰川环境的多时相数据快速分析工具","authors":"J. Lea, Connor J. Shiggins, S. Brough, S. Livingstone, R. McNabb","doi":"10.5194/EGUSPHERE-EGU21-7958","DOIUrl":null,"url":null,"abstract":"ArcticDEM data products include timestamped high spatial resolution (2 and 10 m) digital elevations models (DEMs) covering the period 2009-2017, offering the potential for monitoring ice surface change, structural evolution, geomorphological and proglacial change. However, their varying quality, spatial and temporal data coverage, large file size and requirement for coregistration provide challenges to user accessibility and interrogation of these datasets. Inclusion of these data in the cloud computing based Google Earth Engine (GEE) platform provides opportunities for rapid analysis, though poses its own barriers to access for users through the necessity for familiarity with either JavaScript or Python coding environments. Here we present tools that allow ArcticDEM data to be rapidly queried by users with no coding background through an intuitive graphical user interface, with the aim of improving the accessibility of these datasets for the glacial and earth surface process communities.","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ArcticDEM in Google Earth Engine: tools for rapid analysis of multi-temporal data covering glacial environments\",\"authors\":\"J. Lea, Connor J. Shiggins, S. Brough, S. Livingstone, R. McNabb\",\"doi\":\"10.5194/EGUSPHERE-EGU21-7958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ArcticDEM data products include timestamped high spatial resolution (2 and 10 m) digital elevations models (DEMs) covering the period 2009-2017, offering the potential for monitoring ice surface change, structural evolution, geomorphological and proglacial change. However, their varying quality, spatial and temporal data coverage, large file size and requirement for coregistration provide challenges to user accessibility and interrogation of these datasets. Inclusion of these data in the cloud computing based Google Earth Engine (GEE) platform provides opportunities for rapid analysis, though poses its own barriers to access for users through the necessity for familiarity with either JavaScript or Python coding environments. Here we present tools that allow ArcticDEM data to be rapidly queried by users with no coding background through an intuitive graphical user interface, with the aim of improving the accessibility of these datasets for the glacial and earth surface process communities.\",\"PeriodicalId\":22413,\"journal\":{\"name\":\"The EGU General Assembly\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The EGU General Assembly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/EGUSPHERE-EGU21-7958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EGU General Assembly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/EGUSPHERE-EGU21-7958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

ArcticDEM数据产品包括覆盖2009-2017年期间的时间戳高空间分辨率(2米和10米)数字高程模型(dem),为监测冰面变化、结构演化、地貌和前冰期变化提供了潜力。然而,它们不同的质量、空间和时间数据覆盖、大文件大小和共同注册的要求为用户访问和查询这些数据集提供了挑战。将这些数据包含在基于云计算的Google Earth Engine (GEE)平台中,为快速分析提供了机会,但由于用户必须熟悉JavaScript或Python编码环境,因此对访问这些数据设置了障碍。在这里,我们提出了一种工具,允许没有编码背景的用户通过直观的图形用户界面快速查询ArcticDEM数据,旨在提高这些数据集对冰川和地表过程群落的可访问性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ArcticDEM in Google Earth Engine: tools for rapid analysis of multi-temporal data covering glacial environments
ArcticDEM data products include timestamped high spatial resolution (2 and 10 m) digital elevations models (DEMs) covering the period 2009-2017, offering the potential for monitoring ice surface change, structural evolution, geomorphological and proglacial change. However, their varying quality, spatial and temporal data coverage, large file size and requirement for coregistration provide challenges to user accessibility and interrogation of these datasets. Inclusion of these data in the cloud computing based Google Earth Engine (GEE) platform provides opportunities for rapid analysis, though poses its own barriers to access for users through the necessity for familiarity with either JavaScript or Python coding environments. Here we present tools that allow ArcticDEM data to be rapidly queried by users with no coding background through an intuitive graphical user interface, with the aim of improving the accessibility of these datasets for the glacial and earth surface process communities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GROOPS: An open-source software package for GNSS processing and gravity field recovery Global flood monitoring with GRACE/GRACE-FO Statistical relations between in-situ measured Bz component and thermospheric density variations Current status of project SWEETS: Estimating thermospheric neutral mass densities from satellite data at various altitudes Blast vibration reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1