一种基于分数采样率adc的65nm CMOS前馈CDR

Oleksiy Tyshchenko, A. Sheikholeslami, H. Tamura, Y. Tomita, H. Yamaguchi, M. Kibune, T. Yamamoto
{"title":"一种基于分数采样率adc的65nm CMOS前馈CDR","authors":"Oleksiy Tyshchenko, A. Sheikholeslami, H. Tamura, Y. Tomita, H. Yamaguchi, M. Kibune, T. Yamamoto","doi":"10.1109/ISSCC.2010.5434004","DOIUrl":null,"url":null,"abstract":"ADC-based CDRs take digital samples of the received signal to recover the clock and data. Digital representation of the signal allows for extensive channel equalization in the digital domain. Recently-reported ADC-based CDRs sample the signal at 1× or 2× the baud rate. The 1× CDR aligns the sampling clock with the signal using a phase-tracking feedback loop [1–2], which requires a voltage-controlled oscillator or phase interpolator, both analog circuits, to adjust the phase of the sampling clock. To eliminate these analog circuits (and their phase control) in favor of an all-digital implementation, a blind-sampling ADC-based CDR (top of Fig. 8.6.1) samples the received signal at 2× without phase locking to the signal. The CDR then interpolates between the blind samples to obtain a new set of samples in order to recover the phase and data [3–4]. The doubling of the sampling rate, however, increases the ADC power consumption or, equivalently, reduces the maximum baud rate due to the conversion-rate limitations of ADCs.","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":"15 1","pages":"166-167"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A fractional-sampling-rate ADC-based CDR with feedforward architecture in 65nm CMOS\",\"authors\":\"Oleksiy Tyshchenko, A. Sheikholeslami, H. Tamura, Y. Tomita, H. Yamaguchi, M. Kibune, T. Yamamoto\",\"doi\":\"10.1109/ISSCC.2010.5434004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ADC-based CDRs take digital samples of the received signal to recover the clock and data. Digital representation of the signal allows for extensive channel equalization in the digital domain. Recently-reported ADC-based CDRs sample the signal at 1× or 2× the baud rate. The 1× CDR aligns the sampling clock with the signal using a phase-tracking feedback loop [1–2], which requires a voltage-controlled oscillator or phase interpolator, both analog circuits, to adjust the phase of the sampling clock. To eliminate these analog circuits (and their phase control) in favor of an all-digital implementation, a blind-sampling ADC-based CDR (top of Fig. 8.6.1) samples the received signal at 2× without phase locking to the signal. The CDR then interpolates between the blind samples to obtain a new set of samples in order to recover the phase and data [3–4]. The doubling of the sampling rate, however, increases the ADC power consumption or, equivalently, reduces the maximum baud rate due to the conversion-rate limitations of ADCs.\",\"PeriodicalId\":6418,\"journal\":{\"name\":\"2010 IEEE International Solid-State Circuits Conference - (ISSCC)\",\"volume\":\"15 1\",\"pages\":\"166-167\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Solid-State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2010.5434004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2010.5434004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

基于adc的话单采集接收信号的数字采样来恢复时钟和数据。信号的数字表示允许在数字域中进行广泛的信道均衡。最近报道的基于adc的话单以1倍或2倍波特率采样信号。1x CDR使用相位跟踪反馈回路[1-2]将采样时钟与信号对齐,这需要电压控制振荡器或相位插值器,两者都是模拟电路,以调整采样时钟的相位。为了消除这些模拟电路(及其相位控制),采用全数字实现,基于adc的盲采样CDR(图8.6.1顶部)以2倍的频率对接收信号进行采样,而不锁定信号的相位。然后,CDR在盲样本之间进行插值,以获得一组新的样本,以恢复相位和数据[3-4]。然而,采样率的加倍增加了ADC的功耗,或者,由于ADC的转换速率限制,降低了最大波特率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fractional-sampling-rate ADC-based CDR with feedforward architecture in 65nm CMOS
ADC-based CDRs take digital samples of the received signal to recover the clock and data. Digital representation of the signal allows for extensive channel equalization in the digital domain. Recently-reported ADC-based CDRs sample the signal at 1× or 2× the baud rate. The 1× CDR aligns the sampling clock with the signal using a phase-tracking feedback loop [1–2], which requires a voltage-controlled oscillator or phase interpolator, both analog circuits, to adjust the phase of the sampling clock. To eliminate these analog circuits (and their phase control) in favor of an all-digital implementation, a blind-sampling ADC-based CDR (top of Fig. 8.6.1) samples the received signal at 2× without phase locking to the signal. The CDR then interpolates between the blind samples to obtain a new set of samples in order to recover the phase and data [3–4]. The doubling of the sampling rate, however, increases the ADC power consumption or, equivalently, reduces the maximum baud rate due to the conversion-rate limitations of ADCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An 8.5Gb/s CMOS OEIC with on-chip photodiode for short-distance optical communications A 4.5mW/Gb/s 6.4Gb/s 22+1-lane source-synchronous link rx core with optional cleanup PLL in 65nm CMOS A 76dBΩ 1.7GHz 0.18µm CMOS tunable transimpedance amplifier using broadband current pre-amplifier for high frequency lateral micromechanical oscillators A fully integrated 77GHz FMCW radar system in 65nm CMOS A timing controlled AC-DC converter for biomedical implants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1