M. Fedoniuk, V. Fedoniuk, Vasyl Volodymyrovych Ivantsiv
{"title":"改善城市降水环境监测的可能性(以卢茨克为例)","authors":"M. Fedoniuk, V. Fedoniuk, Vasyl Volodymyrovych Ivantsiv","doi":"10.26565/2410-7360-2019-50-16","DOIUrl":null,"url":null,"abstract":"Formulation of the problem. The environmental parameters of precipitation in the city often differ from the background values and require the special observations program. The existing state monitoring system does not reflect the spatial differentiation of such parameters in urban areas, so it needs to be improved. The purpose of the article: to find out the features of organization and implementation of rainfall environmental monitoring in urban areas, with the justification of the main parameters of observation and spatial placement of network points. Methods. The main results are based on the authors' experience in own observations on the amount, acidity and mineralization of precipitation in several quarters of Lutsk during 2015-2018. Results. Own observations and mapping of individual parameters of atmospheric precipitation in the city allowed to reveal the dependence of the indexes of acidity and mineralization on the amount of precipitation, air pollution, directions of air inflow, temperature, etc. The spatial differentiation of these indicators in the city is significant (the amplitude can reach up to 0.9 units of pH and 15-17 ppm of tds) and is related to the distribution of anthropogenic emissions and some microclimatic differences. Therefore, by organization the system of ecological monitoring of precipitation in the city it is necessary to focus on the definition of such basic parameters: pH, total mineralization, amount of precipitation, and also concomitant: water and air temperature, direction of airflows, carbon dioxide concentration, duration of the previous rainless period, etc. To select the representative locations for the control of precipitation in the city, it is necessary to analyze the following indicators: direction of prevailing winds, landscape and geomorphological features, the proximity of the most sources of anthropogenic contamination, building types etc. In this case, the minimum monitoring scheme should include such control points: the near and far outskirts (in relation to the arrival of prevailing air masses), the leeward sides of large industrial zones or transport interchanges, the largest green zone, area near the city water body, and several points (1-3) in residential areas. Scientific novelty and practical significance. The main parameters and principles of the spatial organization of environmental monitoring of rainwater in the city are identified. The algorithm for creation such network has been tested in Lutsk and can be used for realization in other cities. Automation of similar measurements based on microcontrollers will to create quality non-state monitoring networks with the display of data in real time.","PeriodicalId":40624,"journal":{"name":"Visnyk of V N Karazin Kharkiv National University-Series Geology Geography Ecology","volume":"116 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Possibilities for improvement of environmental monitoring of precipitation in the city (a case of Lutsk)\",\"authors\":\"M. Fedoniuk, V. Fedoniuk, Vasyl Volodymyrovych Ivantsiv\",\"doi\":\"10.26565/2410-7360-2019-50-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formulation of the problem. The environmental parameters of precipitation in the city often differ from the background values and require the special observations program. The existing state monitoring system does not reflect the spatial differentiation of such parameters in urban areas, so it needs to be improved. The purpose of the article: to find out the features of organization and implementation of rainfall environmental monitoring in urban areas, with the justification of the main parameters of observation and spatial placement of network points. Methods. The main results are based on the authors' experience in own observations on the amount, acidity and mineralization of precipitation in several quarters of Lutsk during 2015-2018. Results. Own observations and mapping of individual parameters of atmospheric precipitation in the city allowed to reveal the dependence of the indexes of acidity and mineralization on the amount of precipitation, air pollution, directions of air inflow, temperature, etc. The spatial differentiation of these indicators in the city is significant (the amplitude can reach up to 0.9 units of pH and 15-17 ppm of tds) and is related to the distribution of anthropogenic emissions and some microclimatic differences. Therefore, by organization the system of ecological monitoring of precipitation in the city it is necessary to focus on the definition of such basic parameters: pH, total mineralization, amount of precipitation, and also concomitant: water and air temperature, direction of airflows, carbon dioxide concentration, duration of the previous rainless period, etc. To select the representative locations for the control of precipitation in the city, it is necessary to analyze the following indicators: direction of prevailing winds, landscape and geomorphological features, the proximity of the most sources of anthropogenic contamination, building types etc. In this case, the minimum monitoring scheme should include such control points: the near and far outskirts (in relation to the arrival of prevailing air masses), the leeward sides of large industrial zones or transport interchanges, the largest green zone, area near the city water body, and several points (1-3) in residential areas. Scientific novelty and practical significance. The main parameters and principles of the spatial organization of environmental monitoring of rainwater in the city are identified. The algorithm for creation such network has been tested in Lutsk and can be used for realization in other cities. Automation of similar measurements based on microcontrollers will to create quality non-state monitoring networks with the display of data in real time.\",\"PeriodicalId\":40624,\"journal\":{\"name\":\"Visnyk of V N Karazin Kharkiv National University-Series Geology Geography Ecology\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visnyk of V N Karazin Kharkiv National University-Series Geology Geography Ecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26565/2410-7360-2019-50-16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visnyk of V N Karazin Kharkiv National University-Series Geology Geography Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2410-7360-2019-50-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOLOGY","Score":null,"Total":0}
Possibilities for improvement of environmental monitoring of precipitation in the city (a case of Lutsk)
Formulation of the problem. The environmental parameters of precipitation in the city often differ from the background values and require the special observations program. The existing state monitoring system does not reflect the spatial differentiation of such parameters in urban areas, so it needs to be improved. The purpose of the article: to find out the features of organization and implementation of rainfall environmental monitoring in urban areas, with the justification of the main parameters of observation and spatial placement of network points. Methods. The main results are based on the authors' experience in own observations on the amount, acidity and mineralization of precipitation in several quarters of Lutsk during 2015-2018. Results. Own observations and mapping of individual parameters of atmospheric precipitation in the city allowed to reveal the dependence of the indexes of acidity and mineralization on the amount of precipitation, air pollution, directions of air inflow, temperature, etc. The spatial differentiation of these indicators in the city is significant (the amplitude can reach up to 0.9 units of pH and 15-17 ppm of tds) and is related to the distribution of anthropogenic emissions and some microclimatic differences. Therefore, by organization the system of ecological monitoring of precipitation in the city it is necessary to focus on the definition of such basic parameters: pH, total mineralization, amount of precipitation, and also concomitant: water and air temperature, direction of airflows, carbon dioxide concentration, duration of the previous rainless period, etc. To select the representative locations for the control of precipitation in the city, it is necessary to analyze the following indicators: direction of prevailing winds, landscape and geomorphological features, the proximity of the most sources of anthropogenic contamination, building types etc. In this case, the minimum monitoring scheme should include such control points: the near and far outskirts (in relation to the arrival of prevailing air masses), the leeward sides of large industrial zones or transport interchanges, the largest green zone, area near the city water body, and several points (1-3) in residential areas. Scientific novelty and practical significance. The main parameters and principles of the spatial organization of environmental monitoring of rainwater in the city are identified. The algorithm for creation such network has been tested in Lutsk and can be used for realization in other cities. Automation of similar measurements based on microcontrollers will to create quality non-state monitoring networks with the display of data in real time.