{"title":"反思规划模型:对自我建模系统的挑战","authors":"J. Frank","doi":"10.1109/ICAC.2015.72","DOIUrl":null,"url":null,"abstract":"We discuss the opportunities for autonomous systems to perform reflection on their planners by adapting the models used to build plans. We first describe model-based planning systems, a form of automated planning system driven by declarative models of the planning domain. These models include descriptions of the conditions and effects of actions on the state of the world. When planning the activities of cyber-physical systems, the command and data representation of the system must be formally abstracted to the actions and states described in the planning system model. When the execution of a plan either fails or produces unexpected outcomes, the execution trace can be abstracted and compared to the predicted state according to the planning model, producing a list of discrepancies, these discrepancies can then be used to fix the model. This provides part of a reflection capability, namely, a set of well-formed problems with the domain model, the abstractions, or both. The challenge lies in the rest of the reflection capability, namely, a set of techniques for changing the models or the abstractions. We discuss these challenges and describe some of the options for addressing them.","PeriodicalId":6643,"journal":{"name":"2015 IEEE International Conference on Autonomic Computing","volume":"13 1","pages":"255-260"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Reflecting on Planning Models: A Challenge for Self-Modeling Systems\",\"authors\":\"J. Frank\",\"doi\":\"10.1109/ICAC.2015.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the opportunities for autonomous systems to perform reflection on their planners by adapting the models used to build plans. We first describe model-based planning systems, a form of automated planning system driven by declarative models of the planning domain. These models include descriptions of the conditions and effects of actions on the state of the world. When planning the activities of cyber-physical systems, the command and data representation of the system must be formally abstracted to the actions and states described in the planning system model. When the execution of a plan either fails or produces unexpected outcomes, the execution trace can be abstracted and compared to the predicted state according to the planning model, producing a list of discrepancies, these discrepancies can then be used to fix the model. This provides part of a reflection capability, namely, a set of well-formed problems with the domain model, the abstractions, or both. The challenge lies in the rest of the reflection capability, namely, a set of techniques for changing the models or the abstractions. We discuss these challenges and describe some of the options for addressing them.\",\"PeriodicalId\":6643,\"journal\":{\"name\":\"2015 IEEE International Conference on Autonomic Computing\",\"volume\":\"13 1\",\"pages\":\"255-260\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Autonomic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAC.2015.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Autonomic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2015.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reflecting on Planning Models: A Challenge for Self-Modeling Systems
We discuss the opportunities for autonomous systems to perform reflection on their planners by adapting the models used to build plans. We first describe model-based planning systems, a form of automated planning system driven by declarative models of the planning domain. These models include descriptions of the conditions and effects of actions on the state of the world. When planning the activities of cyber-physical systems, the command and data representation of the system must be formally abstracted to the actions and states described in the planning system model. When the execution of a plan either fails or produces unexpected outcomes, the execution trace can be abstracted and compared to the predicted state according to the planning model, producing a list of discrepancies, these discrepancies can then be used to fix the model. This provides part of a reflection capability, namely, a set of well-formed problems with the domain model, the abstractions, or both. The challenge lies in the rest of the reflection capability, namely, a set of techniques for changing the models or the abstractions. We discuss these challenges and describe some of the options for addressing them.