探索缺失数据估计的传感器间相关性

Liying Li, Yang Liu, Tongquan Wei, Xin Li
{"title":"探索缺失数据估计的传感器间相关性","authors":"Liying Li, Yang Liu, Tongquan Wei, Xin Li","doi":"10.1109/IECON43393.2020.9254904","DOIUrl":null,"url":null,"abstract":"Data mining techniques have been widely applied to various fields including industrial, business, and governmental applications. Missing data is a common occurrence in a number of real-world databases, which may substantially affect the accuracy of data processing. In this paper, we propose a novel approach for missing data estimation by efficiently exploring inter-sensor correlation. Namely, given multiple sensors for data collection, we attempt to recover the missing data of a few sensors by using the measurement data from other sensors. Towards this goal, we develop an iterative solver for missing data estimation. Our numerical experiments on two industrial datasets demonstrate that the proposed method can reduce the imputation error by up to 7.25× compared to a conventional method in the literature.","PeriodicalId":13045,"journal":{"name":"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society","volume":"1 1","pages":"2108-2114"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Exploring Inter-Sensor Correlation for Missing Data Estimation\",\"authors\":\"Liying Li, Yang Liu, Tongquan Wei, Xin Li\",\"doi\":\"10.1109/IECON43393.2020.9254904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data mining techniques have been widely applied to various fields including industrial, business, and governmental applications. Missing data is a common occurrence in a number of real-world databases, which may substantially affect the accuracy of data processing. In this paper, we propose a novel approach for missing data estimation by efficiently exploring inter-sensor correlation. Namely, given multiple sensors for data collection, we attempt to recover the missing data of a few sensors by using the measurement data from other sensors. Towards this goal, we develop an iterative solver for missing data estimation. Our numerical experiments on two industrial datasets demonstrate that the proposed method can reduce the imputation error by up to 7.25× compared to a conventional method in the literature.\",\"PeriodicalId\":13045,\"journal\":{\"name\":\"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"1 1\",\"pages\":\"2108-2114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON43393.2020.9254904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON43393.2020.9254904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

数据挖掘技术已广泛应用于工业、商业和政府等各个领域。在许多真实世界的数据库中,丢失数据是一种常见现象,这可能会严重影响数据处理的准确性。在本文中,我们提出了一种通过有效地探索传感器间相关性来估计缺失数据的新方法。即给定多个传感器进行数据采集,我们尝试使用其他传感器的测量数据来恢复少数传感器的缺失数据。为了实现这一目标,我们开发了一个用于缺失数据估计的迭代求解器。我们在两个工业数据集上的数值实验表明,与文献中的传统方法相比,所提出的方法可以将输入误差降低7.25倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring Inter-Sensor Correlation for Missing Data Estimation
Data mining techniques have been widely applied to various fields including industrial, business, and governmental applications. Missing data is a common occurrence in a number of real-world databases, which may substantially affect the accuracy of data processing. In this paper, we propose a novel approach for missing data estimation by efficiently exploring inter-sensor correlation. Namely, given multiple sensors for data collection, we attempt to recover the missing data of a few sensors by using the measurement data from other sensors. Towards this goal, we develop an iterative solver for missing data estimation. Our numerical experiments on two industrial datasets demonstrate that the proposed method can reduce the imputation error by up to 7.25× compared to a conventional method in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A DCT/PET Submodule with Symmetrical Bipolar DC Outputs High-precision Sensorless Control Based on Magnetic Flux/Current Method for SRM Starting/Generating System Implementation of a Wireless Sensor Network Designed to Be Embedded in Reinforced Concrete H∞ Consensus Control for Discrete-Time Stochastic Multi-agent Systems with Infinite Markov Jumps Attitude stabilization for aircraft under angular velocity constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1