{"title":"氧化-氧化外延垂直排列纳米复合薄膜的自发有序","authors":"Xing Sun, J. MacManus‐Driscoll, Haiyan Wang","doi":"10.1146/annurev-matsci-091719-112806","DOIUrl":null,"url":null,"abstract":"The emerging field of self-assembled vertically aligned nanocomposite (VAN) thin films effectively enables strain, interface, and microstructure engineering as well as (multi)functional improvements in electric, magnetic, optical, and energy-related properties. Well-ordered or patterned microstructures not only empower VAN thin films with many new functionalities but also enable VAN thin films to be used in nanoscale devices. Comparative ordered devices formed via templating methods suffer from critical drawbacks of processing complexity and potential contamination. Therefore, VAN thin films with spontaneous ordering stand out and display many appealing features for next-generation technological devices, such as electronics, optoelectronics, ultrahigh-density memory systems, photonics, and 3D microbatteries. The spontaneous ordering described in this review contains ordered/patterned structures in both in-plane and out-of-plane directions. In particular, approaches to obtaining spontaneously ordered/patterned structures in-plane are systematically reviewedfrom both thermodynamic and kinetic perspectives. Out-of-plane ordering is also discussed in detail. In addition to reviewing the progress of VAN films with spontaneous ordering, this article also highlights some recent developments in spontaneous ordering approaches and proposes future directions.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Spontaneous Ordering of Oxide-Oxide Epitaxial Vertically Aligned Nanocomposite Thin Films\",\"authors\":\"Xing Sun, J. MacManus‐Driscoll, Haiyan Wang\",\"doi\":\"10.1146/annurev-matsci-091719-112806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emerging field of self-assembled vertically aligned nanocomposite (VAN) thin films effectively enables strain, interface, and microstructure engineering as well as (multi)functional improvements in electric, magnetic, optical, and energy-related properties. Well-ordered or patterned microstructures not only empower VAN thin films with many new functionalities but also enable VAN thin films to be used in nanoscale devices. Comparative ordered devices formed via templating methods suffer from critical drawbacks of processing complexity and potential contamination. Therefore, VAN thin films with spontaneous ordering stand out and display many appealing features for next-generation technological devices, such as electronics, optoelectronics, ultrahigh-density memory systems, photonics, and 3D microbatteries. The spontaneous ordering described in this review contains ordered/patterned structures in both in-plane and out-of-plane directions. In particular, approaches to obtaining spontaneously ordered/patterned structures in-plane are systematically reviewedfrom both thermodynamic and kinetic perspectives. Out-of-plane ordering is also discussed in detail. In addition to reviewing the progress of VAN films with spontaneous ordering, this article also highlights some recent developments in spontaneous ordering approaches and proposes future directions.\",\"PeriodicalId\":8055,\"journal\":{\"name\":\"Annual Review of Materials Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-matsci-091719-112806\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1146/annurev-matsci-091719-112806","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Spontaneous Ordering of Oxide-Oxide Epitaxial Vertically Aligned Nanocomposite Thin Films
The emerging field of self-assembled vertically aligned nanocomposite (VAN) thin films effectively enables strain, interface, and microstructure engineering as well as (multi)functional improvements in electric, magnetic, optical, and energy-related properties. Well-ordered or patterned microstructures not only empower VAN thin films with many new functionalities but also enable VAN thin films to be used in nanoscale devices. Comparative ordered devices formed via templating methods suffer from critical drawbacks of processing complexity and potential contamination. Therefore, VAN thin films with spontaneous ordering stand out and display many appealing features for next-generation technological devices, such as electronics, optoelectronics, ultrahigh-density memory systems, photonics, and 3D microbatteries. The spontaneous ordering described in this review contains ordered/patterned structures in both in-plane and out-of-plane directions. In particular, approaches to obtaining spontaneously ordered/patterned structures in-plane are systematically reviewedfrom both thermodynamic and kinetic perspectives. Out-of-plane ordering is also discussed in detail. In addition to reviewing the progress of VAN films with spontaneous ordering, this article also highlights some recent developments in spontaneous ordering approaches and proposes future directions.
期刊介绍:
The Annual Review of Materials Research, published since 1971, is a journal that covers significant developments in the field of materials research. It includes original methodologies, materials phenomena, material systems, and special keynote topics. The current volume of the journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The journal defines its scope as encompassing significant developments in materials science, including methodologies for studying materials and materials phenomena. It is indexed and abstracted in various databases, such as Scopus, Science Citation Index Expanded, Civil Engineering Abstracts, INSPEC, and Academic Search, among others.