胸升主动脉瘤的流体结构相互作用

Q4 Biochemistry, Genetics and Molecular Biology Molecular & Cellular Biomechanics Pub Date : 2019-02-21 DOI:10.32604/mcb.2019.05705
S. Avril
{"title":"胸升主动脉瘤的流体结构相互作用","authors":"S. Avril","doi":"10.32604/mcb.2019.05705","DOIUrl":null,"url":null,"abstract":"The fluid mechanics community has been interested for many years in hemodynamics. More recently, significant endeavours of the solid mechanics community have permitted to establish constitutive equations and to achieve stress analyses in arterial lesions (atheromatous plaque in coronary or carotid arteries, aneurysms of the aorta). The mechanical properties of blood vessels have often been characterized ex vivo, but medical imaging, including MRI, now allows non-intrusive identifications in vivo. The spatial heterogeneity of these mechanical properties, even at the macroscopic scale, remains poorly explored despite its undeniable interest in understanding the mechanisms of remodeling and degeneration of the tissue. We are interested in the problem of identifying the fields of mechanical properties of aneurysms of the aorta. Scientific barriers are related to the complex geometry, the nonlinear and anisotropic behavior of tissues, the multiaxial loading conditions, and to the measurement of a local response in these tissues. Our identification approaches, based on digital image correlation field measurements and inverse methods, have demonstrated the link between the heterogeneity of mechanical properties and the existence of localized failure modes. A micromechanical approach has also made it possible to develop a mechanobiological model to reproduce the behavior of the aorta in surgical situations and a simulation software is being developed for assistance to personalized surgery in the cardiovascular field.","PeriodicalId":48719,"journal":{"name":"Molecular & Cellular Biomechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluid Structure Interactions in Ascending Thoracic Aortic Aneurysms\",\"authors\":\"S. Avril\",\"doi\":\"10.32604/mcb.2019.05705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fluid mechanics community has been interested for many years in hemodynamics. More recently, significant endeavours of the solid mechanics community have permitted to establish constitutive equations and to achieve stress analyses in arterial lesions (atheromatous plaque in coronary or carotid arteries, aneurysms of the aorta). The mechanical properties of blood vessels have often been characterized ex vivo, but medical imaging, including MRI, now allows non-intrusive identifications in vivo. The spatial heterogeneity of these mechanical properties, even at the macroscopic scale, remains poorly explored despite its undeniable interest in understanding the mechanisms of remodeling and degeneration of the tissue. We are interested in the problem of identifying the fields of mechanical properties of aneurysms of the aorta. Scientific barriers are related to the complex geometry, the nonlinear and anisotropic behavior of tissues, the multiaxial loading conditions, and to the measurement of a local response in these tissues. Our identification approaches, based on digital image correlation field measurements and inverse methods, have demonstrated the link between the heterogeneity of mechanical properties and the existence of localized failure modes. A micromechanical approach has also made it possible to develop a mechanobiological model to reproduce the behavior of the aorta in surgical situations and a simulation software is being developed for assistance to personalized surgery in the cardiovascular field.\",\"PeriodicalId\":48719,\"journal\":{\"name\":\"Molecular & Cellular Biomechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Biomechanics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.32604/mcb.2019.05705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Biomechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/mcb.2019.05705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

流体力学学界多年来一直对血流动力学感兴趣。最近,固体力学界的重大努力已经允许建立本构方程并实现动脉病变(冠状动脉或颈动脉粥样硬化斑块,主动脉动脉瘤)的应力分析。血管的机械特性通常是体外表征的,但医学成像,包括MRI,现在可以在体内进行非侵入性鉴定。这些力学性质的空间异质性,即使在宏观尺度上,仍然很少被探索,尽管它对理解组织重塑和变性的机制有不可否认的兴趣。我们感兴趣的问题是确定主动脉动脉瘤的力学性质领域。科学屏障与复杂的几何结构、组织的非线性和各向异性行为、多轴载荷条件以及这些组织的局部响应测量有关。我们基于数字图像相关场测量和逆方法的识别方法已经证明了力学性能的非均质性与局部失效模式的存在之间的联系。微机械方法也使得开发机械生物学模型来重现手术情况下主动脉的行为成为可能,并且正在开发模拟软件以协助心血管领域的个性化手术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fluid Structure Interactions in Ascending Thoracic Aortic Aneurysms
The fluid mechanics community has been interested for many years in hemodynamics. More recently, significant endeavours of the solid mechanics community have permitted to establish constitutive equations and to achieve stress analyses in arterial lesions (atheromatous plaque in coronary or carotid arteries, aneurysms of the aorta). The mechanical properties of blood vessels have often been characterized ex vivo, but medical imaging, including MRI, now allows non-intrusive identifications in vivo. The spatial heterogeneity of these mechanical properties, even at the macroscopic scale, remains poorly explored despite its undeniable interest in understanding the mechanisms of remodeling and degeneration of the tissue. We are interested in the problem of identifying the fields of mechanical properties of aneurysms of the aorta. Scientific barriers are related to the complex geometry, the nonlinear and anisotropic behavior of tissues, the multiaxial loading conditions, and to the measurement of a local response in these tissues. Our identification approaches, based on digital image correlation field measurements and inverse methods, have demonstrated the link between the heterogeneity of mechanical properties and the existence of localized failure modes. A micromechanical approach has also made it possible to develop a mechanobiological model to reproduce the behavior of the aorta in surgical situations and a simulation software is being developed for assistance to personalized surgery in the cardiovascular field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular & Cellular Biomechanics
Molecular & Cellular Biomechanics CELL BIOLOGYENGINEERING, BIOMEDICAL&-ENGINEERING, BIOMEDICAL
CiteScore
1.70
自引率
0.00%
发文量
21
期刊介绍: The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications.
期刊最新文献
Hot Topics of Molecular and Cellular Biomechanics in 2022 CFD Study on Hemodynamic Characteristics of Inferior Vena Cava Filter Affected by Blood Vessel Diameter Can PAPE-Induced Increases in Jump Height Be Explained by Jumping Kinematics? Reconstruction of the Hindlimb Locomotion of Confuciusornis (Aves) and Its Implication for the Origin of Avian Flight Classification of Leukemia and Leukemoid Using VGG-16 Convolutional Neural Network Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1