线性量子系统:教程

IF 7.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Annual Reviews in Control Pub Date : 2022-05-01 DOI:10.48550/arXiv.2205.04080
Guofeng Zhang, Z. Dong
{"title":"线性量子系统:教程","authors":"Guofeng Zhang, Z. Dong","doi":"10.48550/arXiv.2205.04080","DOIUrl":null,"url":null,"abstract":"The purpose of this tutorial is to give a brief introduction to linear quantum control systems. The mathematical model of linear quantum control systems is presented first, then some fundamental control-theoretic notions such as stability, controllability and observability are given, which are closely related to several important concepts in quantum information science such as decoherence-free subsystems, quantum nondemolition variables, and back-action evasion measurements. After that, quantum Gaussian states are introduced, in particular, an information-theoretic uncertainty relation is presented which often gives a better bound for mixed Gaussian states than the well-known Heisenberg uncertainty relation. The quantum Kalman filter is presented for quantum linear systems, which is the quantum analogy of the Kalman filter for classical (namely, non-quantum-mechanical) linear systems. The quantum Kalman canonical decomposition for quantum linear systems is recorded, and its application is illustrated by means of a recent experiment. As single- and multi-photon states are useful resources in quantum information technology, the response of quantum linear systems to these types of input is presented. Finally, coherent feedback control of quantum linear systems is briefly introduced, and a recent experiment is used to demonstrate the effectiveness of quantum linear systems and networks theory.","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Linear quantum systems: a tutorial\",\"authors\":\"Guofeng Zhang, Z. Dong\",\"doi\":\"10.48550/arXiv.2205.04080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this tutorial is to give a brief introduction to linear quantum control systems. The mathematical model of linear quantum control systems is presented first, then some fundamental control-theoretic notions such as stability, controllability and observability are given, which are closely related to several important concepts in quantum information science such as decoherence-free subsystems, quantum nondemolition variables, and back-action evasion measurements. After that, quantum Gaussian states are introduced, in particular, an information-theoretic uncertainty relation is presented which often gives a better bound for mixed Gaussian states than the well-known Heisenberg uncertainty relation. The quantum Kalman filter is presented for quantum linear systems, which is the quantum analogy of the Kalman filter for classical (namely, non-quantum-mechanical) linear systems. The quantum Kalman canonical decomposition for quantum linear systems is recorded, and its application is illustrated by means of a recent experiment. As single- and multi-photon states are useful resources in quantum information technology, the response of quantum linear systems to these types of input is presented. Finally, coherent feedback control of quantum linear systems is briefly introduced, and a recent experiment is used to demonstrate the effectiveness of quantum linear systems and networks theory.\",\"PeriodicalId\":50750,\"journal\":{\"name\":\"Annual Reviews in Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Reviews in Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2205.04080\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reviews in Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.04080","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 10

摘要

本教程的目的是简要介绍线性量子控制系统。首先给出了线性量子控制系统的数学模型,然后给出了一些基本的控制理论概念,如稳定性、可控性和可观测性,这些概念与量子信息科学中的几个重要概念密切相关,如无退相干子系统、量子非破坏变量和反作用规避测量。在此基础上,引入了量子高斯态,提出了一种信息论的不确定性关系,它通常比著名的海森堡不确定性关系给出了更好的混合高斯态边界。提出了用于量子线性系统的量子卡尔曼滤波器,它是经典(即非量子力学)线性系统的卡尔曼滤波器的量子类比。记录了量子线性系统的量子卡尔曼正则分解,并通过最近的一个实验说明了它的应用。由于单光子态和多光子态在量子信息技术中是有用的资源,本文给出了量子线性系统对这两种输入的响应。最后简要介绍了量子线性系统的相干反馈控制,并用最近的一个实验证明了量子线性系统和网络理论的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Linear quantum systems: a tutorial
The purpose of this tutorial is to give a brief introduction to linear quantum control systems. The mathematical model of linear quantum control systems is presented first, then some fundamental control-theoretic notions such as stability, controllability and observability are given, which are closely related to several important concepts in quantum information science such as decoherence-free subsystems, quantum nondemolition variables, and back-action evasion measurements. After that, quantum Gaussian states are introduced, in particular, an information-theoretic uncertainty relation is presented which often gives a better bound for mixed Gaussian states than the well-known Heisenberg uncertainty relation. The quantum Kalman filter is presented for quantum linear systems, which is the quantum analogy of the Kalman filter for classical (namely, non-quantum-mechanical) linear systems. The quantum Kalman canonical decomposition for quantum linear systems is recorded, and its application is illustrated by means of a recent experiment. As single- and multi-photon states are useful resources in quantum information technology, the response of quantum linear systems to these types of input is presented. Finally, coherent feedback control of quantum linear systems is briefly introduced, and a recent experiment is used to demonstrate the effectiveness of quantum linear systems and networks theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Reviews in Control
Annual Reviews in Control 工程技术-自动化与控制系统
CiteScore
19.00
自引率
2.10%
发文量
53
审稿时长
36 days
期刊介绍: The field of Control is changing very fast now with technology-driven “societal grand challenges” and with the deployment of new digital technologies. The aim of Annual Reviews in Control is to provide comprehensive and visionary views of the field of Control, by publishing the following types of review articles: Survey Article: Review papers on main methodologies or technical advances adding considerable technical value to the state of the art. Note that papers which purely rely on mechanistic searches and lack comprehensive analysis providing a clear contribution to the field will be rejected. Vision Article: Cutting-edge and emerging topics with visionary perspective on the future of the field or how it will bridge multiple disciplines, and Tutorial research Article: Fundamental guides for future studies.
期刊最新文献
Editorial Board Analysis and design of model predictive control frameworks for dynamic operation—An overview Advances in controller design of pacemakers for pacing control: A comprehensive review Recent advances in path integral control for trajectory optimization: An overview in theoretical and algorithmic perspectives Analyzing stability in 2D systems via LMIs: From pioneering to recent contributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1