从乙烯基醚的受控自由基聚合到聚合诱导的自组装

IF 2.3 4区 化学 Q3 POLYMER SCIENCE Polymer Journal Pub Date : 2022-08-26 DOI:10.1038/s41428-022-00698-w
Shinji Sugihara
{"title":"从乙烯基醚的受控自由基聚合到聚合诱导的自组装","authors":"Shinji Sugihara","doi":"10.1038/s41428-022-00698-w","DOIUrl":null,"url":null,"abstract":"Vinyl ether (VE) was long believed to be among the monomers that could not be radically homopolymerized. Therefore, to synthesize block copolymers with versatile radically polymerizable monomers, efficient transformation reactions were necessary between living cationic and controlled radical polymerizations. Under such circumstances, some groundbreaking polymerizations have been discovered. One reaction, a metal-free RAFT cationic polymerization, enabled the in situ introduction of the thiocarbonylthio moiety into poly(VE)s. This technique produced block copolymers using both cationic and radical RAFT processes. Advances in research have made it possible to perform radical homopolymerization with hydroxy-functional VE. This achievement was attributed to the hydrogen bonding between the VE oxygen and the hydroxy group that reduced the reactivity of the growing radical. Consequently, RAFT radical polymerization of VE was achieved due to hydrogen bonds and/or cation-π interactions between VE monomers and the propagating radical. Thus, vinyl ether became a radically polymerizable monomer. By using the resulting poly(VE) as a thermoresponsive polymer and as a reactive emulsifier for polymerization-induced self-assembly, various functional polymers and nano-objects can be obtained. This review focuses on the controlled radical polymerization of VEs and the related self-assemblies. This review focuses on the controlled radical polymerization of vinyl ether (VE) and the related self-assemblies. VE was long believed to be among the monomers that could not be radically homopolymerized. Under such circumstances, some groundbreaking polymerizations of VE have been discovered. Advances in research have made it possible to perform controlled radical polymerization with VE due to hydrogen bonds and/or cation-π interactions between VE monomers and the propagating radical. By using the resulting poly(VE)s, various functional polymers and nano-objects via polymerization-induced self-assembly can be obtained.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"54 12","pages":"1407-1418"},"PeriodicalIF":2.3000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"From controlled radical polymerization of vinyl ether to polymerization-induced self-assembly\",\"authors\":\"Shinji Sugihara\",\"doi\":\"10.1038/s41428-022-00698-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vinyl ether (VE) was long believed to be among the monomers that could not be radically homopolymerized. Therefore, to synthesize block copolymers with versatile radically polymerizable monomers, efficient transformation reactions were necessary between living cationic and controlled radical polymerizations. Under such circumstances, some groundbreaking polymerizations have been discovered. One reaction, a metal-free RAFT cationic polymerization, enabled the in situ introduction of the thiocarbonylthio moiety into poly(VE)s. This technique produced block copolymers using both cationic and radical RAFT processes. Advances in research have made it possible to perform radical homopolymerization with hydroxy-functional VE. This achievement was attributed to the hydrogen bonding between the VE oxygen and the hydroxy group that reduced the reactivity of the growing radical. Consequently, RAFT radical polymerization of VE was achieved due to hydrogen bonds and/or cation-π interactions between VE monomers and the propagating radical. Thus, vinyl ether became a radically polymerizable monomer. By using the resulting poly(VE) as a thermoresponsive polymer and as a reactive emulsifier for polymerization-induced self-assembly, various functional polymers and nano-objects can be obtained. This review focuses on the controlled radical polymerization of VEs and the related self-assemblies. This review focuses on the controlled radical polymerization of vinyl ether (VE) and the related self-assemblies. VE was long believed to be among the monomers that could not be radically homopolymerized. Under such circumstances, some groundbreaking polymerizations of VE have been discovered. Advances in research have made it possible to perform controlled radical polymerization with VE due to hydrogen bonds and/or cation-π interactions between VE monomers and the propagating radical. By using the resulting poly(VE)s, various functional polymers and nano-objects via polymerization-induced self-assembly can be obtained.\",\"PeriodicalId\":20302,\"journal\":{\"name\":\"Polymer Journal\",\"volume\":\"54 12\",\"pages\":\"1407-1418\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41428-022-00698-w\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41428-022-00698-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 3

摘要

长期以来,人们一直认为乙烯基醚(VE)是无法进行自由基均聚的单体之一。因此,要合成具有多功能可自由基聚合单体的嵌段共聚物,必须在活阳离子聚合和受控自由基聚合之间进行有效的转化反应。在这种情况下,人们发现了一些突破性的聚合反应。其中一种反应,即无金属 RAFT 阳离子聚合反应,可将硫代羰硫基原位引入聚(VE)中。这种技术利用阳离子和自由基 RAFT 工艺生产嵌段共聚物。研究的进展使得羟基官能团 VE 的自由基均聚成为可能。这一成果归功于 VE 氧和羟基之间的氢键作用,降低了生长自由基的反应活性。因此,由于 VE 单体与扩展自由基之间的氢键和/或阳离子-π相互作用,VE 实现了 RAFT 自由基聚合。因此,乙烯基醚成为一种可自由基聚合的单体。利用由此产生的聚(VE)作为热致伸缩性聚合物和聚合诱导自组装的活性乳化剂,可以获得各种功能聚合物和纳米物体。本综述重点介绍 VE 的受控自由基聚合及相关自组装。本综述侧重于乙烯基醚(VE)的受控自由基聚合及相关自组装。长期以来,人们一直认为乙烯基醚是无法进行自由基均聚的单体之一。在这种情况下,人们发现了 VE 的一些突破性聚合反应。由于 VE 单体与传播自由基之间存在氢键和/或阳离子-π 相互作用,研究进展使 VE 的受控自由基聚合成为可能。利用由此产生的聚(VE),可以通过聚合诱导的自组装获得各种功能聚合物和纳米物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From controlled radical polymerization of vinyl ether to polymerization-induced self-assembly
Vinyl ether (VE) was long believed to be among the monomers that could not be radically homopolymerized. Therefore, to synthesize block copolymers with versatile radically polymerizable monomers, efficient transformation reactions were necessary between living cationic and controlled radical polymerizations. Under such circumstances, some groundbreaking polymerizations have been discovered. One reaction, a metal-free RAFT cationic polymerization, enabled the in situ introduction of the thiocarbonylthio moiety into poly(VE)s. This technique produced block copolymers using both cationic and radical RAFT processes. Advances in research have made it possible to perform radical homopolymerization with hydroxy-functional VE. This achievement was attributed to the hydrogen bonding between the VE oxygen and the hydroxy group that reduced the reactivity of the growing radical. Consequently, RAFT radical polymerization of VE was achieved due to hydrogen bonds and/or cation-π interactions between VE monomers and the propagating radical. Thus, vinyl ether became a radically polymerizable monomer. By using the resulting poly(VE) as a thermoresponsive polymer and as a reactive emulsifier for polymerization-induced self-assembly, various functional polymers and nano-objects can be obtained. This review focuses on the controlled radical polymerization of VEs and the related self-assemblies. This review focuses on the controlled radical polymerization of vinyl ether (VE) and the related self-assemblies. VE was long believed to be among the monomers that could not be radically homopolymerized. Under such circumstances, some groundbreaking polymerizations of VE have been discovered. Advances in research have made it possible to perform controlled radical polymerization with VE due to hydrogen bonds and/or cation-π interactions between VE monomers and the propagating radical. By using the resulting poly(VE)s, various functional polymers and nano-objects via polymerization-induced self-assembly can be obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Journal
Polymer Journal 化学-高分子科学
CiteScore
5.60
自引率
7.10%
发文量
131
审稿时长
2.5 months
期刊介绍: Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews. Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below: Polymer synthesis and reactions Polymer structures Physical properties of polymers Polymer surface and interfaces Functional polymers Supramolecular polymers Self-assembled materials Biopolymers and bio-related polymer materials Polymer engineering.
期刊最新文献
Special issue: Rising Stars in Polymer Science 2024 Effect of heat treatment time on the PTC behavior of wollastonite/CB/CPE composites Acid-activatable photosensitizers for photodynamic therapy using self-aggregates of chlorophyll‒peptide conjugates Viscoelastic behaviors for optimizing self-healing of gels with host–guest inclusion complexes Structural analysis of polymers via solid-state dynamic nuclear polarization (DNP)-NMR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1