{"title":"自然图像去模糊的非自然L0稀疏表示","authors":"Li Xu, Shicheng Zheng, Jiaya Jia","doi":"10.1109/CVPR.2013.147","DOIUrl":null,"url":null,"abstract":"We show in this paper that the success of previous maximum a posterior (MAP) based blur removal methods partly stems from their respective intermediate steps, which implicitly or explicitly create an unnatural representation containing salient image structures. We propose a generalized and mathematically sound L0 sparse expression, together with a new effective method, for motion deblurring. Our system does not require extra filtering during optimization and demonstrates fast energy decreasing, making a small number of iterations enough for convergence. It also provides a unified framework for both uniform and non-uniform motion deblurring. We extensively validate our method and show comparison with other approaches with respect to convergence speed, running time, and result quality.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"13 1","pages":"1107-1114"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"989","resultStr":"{\"title\":\"Unnatural L0 Sparse Representation for Natural Image Deblurring\",\"authors\":\"Li Xu, Shicheng Zheng, Jiaya Jia\",\"doi\":\"10.1109/CVPR.2013.147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show in this paper that the success of previous maximum a posterior (MAP) based blur removal methods partly stems from their respective intermediate steps, which implicitly or explicitly create an unnatural representation containing salient image structures. We propose a generalized and mathematically sound L0 sparse expression, together with a new effective method, for motion deblurring. Our system does not require extra filtering during optimization and demonstrates fast energy decreasing, making a small number of iterations enough for convergence. It also provides a unified framework for both uniform and non-uniform motion deblurring. We extensively validate our method and show comparison with other approaches with respect to convergence speed, running time, and result quality.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"13 1\",\"pages\":\"1107-1114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"989\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unnatural L0 Sparse Representation for Natural Image Deblurring
We show in this paper that the success of previous maximum a posterior (MAP) based blur removal methods partly stems from their respective intermediate steps, which implicitly or explicitly create an unnatural representation containing salient image structures. We propose a generalized and mathematically sound L0 sparse expression, together with a new effective method, for motion deblurring. Our system does not require extra filtering during optimization and demonstrates fast energy decreasing, making a small number of iterations enough for convergence. It also provides a unified framework for both uniform and non-uniform motion deblurring. We extensively validate our method and show comparison with other approaches with respect to convergence speed, running time, and result quality.