基于PMSG的不同工况下WPS稳态值的直接分析预测定

IF 1.5 Q4 ENERGY & FUELS Wind Engineering Pub Date : 2022-10-01 DOI:10.1177/0309524X221093531
R. Vijayapriya, P. Raja, M. P. Selvan
{"title":"基于PMSG的不同工况下WPS稳态值的直接分析预测定","authors":"R. Vijayapriya, P. Raja, M. P. Selvan","doi":"10.1177/0309524X221093531","DOIUrl":null,"url":null,"abstract":"This paper presents a direct analytical method to predetermine the steady-state values of a permanent magnet synchronous generator (PMSG) based wind power system (WPS) at each stage of power flow. A generalized structured is developed with two independent equivalent circuits, that is, PMSG and grid side. To effectively determine the converters performance numerals despite grid disturbances, steady-state model is structured with positive sequence components of grid voltage. The advantage of the proposed model is that the methods evade the requirements of d-q modeling and a dedicated controller to evaluate the system performance. Using the proposed steady-state model, the entire WPS components ratings is predicted evading time domain simulation with complicated controller design. Also, the simple controller design is proposed to aid in optimal power flow supplement with FRT requirements under all possible system operating conditions. Ultimately, validation of predetermined values with the simulated PSCAD/EMTDC response including the proposed controller is investigated.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"76 1","pages":"1570 - 1589"},"PeriodicalIF":1.5000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A direct analytical predetermination of PMSG based WPS steady-state values under different operating conditions\",\"authors\":\"R. Vijayapriya, P. Raja, M. P. Selvan\",\"doi\":\"10.1177/0309524X221093531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a direct analytical method to predetermine the steady-state values of a permanent magnet synchronous generator (PMSG) based wind power system (WPS) at each stage of power flow. A generalized structured is developed with two independent equivalent circuits, that is, PMSG and grid side. To effectively determine the converters performance numerals despite grid disturbances, steady-state model is structured with positive sequence components of grid voltage. The advantage of the proposed model is that the methods evade the requirements of d-q modeling and a dedicated controller to evaluate the system performance. Using the proposed steady-state model, the entire WPS components ratings is predicted evading time domain simulation with complicated controller design. Also, the simple controller design is proposed to aid in optimal power flow supplement with FRT requirements under all possible system operating conditions. Ultimately, validation of predetermined values with the simulated PSCAD/EMTDC response including the proposed controller is investigated.\",\"PeriodicalId\":51570,\"journal\":{\"name\":\"Wind Engineering\",\"volume\":\"76 1\",\"pages\":\"1570 - 1589\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0309524X221093531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524X221093531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于永磁同步发电机(PMSG)的风力发电系统(WPS)在潮流各阶段稳态值的直接解析预估方法。提出了一种具有两个独立等效电路的广义结构,即PMSG和栅格侧。为了有效地确定电网扰动下变流器的性能数值,采用电网电压正序分量构建了稳态模型。该模型的优点是避开了d-q建模和专用控制器的要求来评估系统性能。利用所提出的稳态模型,预测了整个WPS组件的额定值,避开了复杂控制器设计的时域仿真。此外,提出了简单的控制器设计,以帮助在所有可能的系统运行条件下的最优潮流补充FRT要求。最后,通过模拟PSCAD/EMTDC响应(包括所提出的控制器)验证预定值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A direct analytical predetermination of PMSG based WPS steady-state values under different operating conditions
This paper presents a direct analytical method to predetermine the steady-state values of a permanent magnet synchronous generator (PMSG) based wind power system (WPS) at each stage of power flow. A generalized structured is developed with two independent equivalent circuits, that is, PMSG and grid side. To effectively determine the converters performance numerals despite grid disturbances, steady-state model is structured with positive sequence components of grid voltage. The advantage of the proposed model is that the methods evade the requirements of d-q modeling and a dedicated controller to evaluate the system performance. Using the proposed steady-state model, the entire WPS components ratings is predicted evading time domain simulation with complicated controller design. Also, the simple controller design is proposed to aid in optimal power flow supplement with FRT requirements under all possible system operating conditions. Ultimately, validation of predetermined values with the simulated PSCAD/EMTDC response including the proposed controller is investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wind Engineering
Wind Engineering ENERGY & FUELS-
CiteScore
4.00
自引率
13.30%
发文量
81
期刊介绍: Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.
期刊最新文献
Extended state observer-based primary load frequency controller for power systems with ultra-high wind-energy penetration Quantifying the impact of sensor precision on power output of a wind turbine: A sensitivity analysis via Monte Carlo simulation study Design and realization of a pre-production platform for wind turbine manufacturing Analysis of wind power curve modeling using multi-model regression On the aerodynamics of dual-stage co-axial vertical-axis wind turbines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1