{"title":"扫描环境:三维点云图中位置识别的自我中心空间描述符","authors":"Giseop Kim, Ayoung Kim","doi":"10.1109/IROS.2018.8593953","DOIUrl":null,"url":null,"abstract":"Compared to diverse feature detectors and descriptors used for visual scenes, describing a place using structural information is relatively less reported. Recent advances in simultaneous localization and mapping (SLAM) provides dense 3D maps of the environment and the localization is proposed by diverse sensors. Toward the global localization based on the structural information, we propose Scan Context, a non-histogram-based global descriptor from 3D Light Detection and Ranging (LiDAR) scans. Unlike previously reported methods, the proposed approach directly records a 3D structure of a visible space from a sensor and does not rely on a histogram or on prior training. In addition, this approach proposes the use of a similarity score to calculate the distance between two scan contexts and also a two-phase search algorithm to efficiently detect a loop. Scan context and its search algorithm make loop-detection invariant to LiDAR viewpoint changes so that loops can be detected in places such as reverse revisit and corner. Scan context performance has been evaluated via various benchmark datasets of 3D LiDAR scans, and the proposed method shows a sufficiently improved performance.","PeriodicalId":6640,"journal":{"name":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"404 1","pages":"4802-4809"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"353","resultStr":"{\"title\":\"Scan Context: Egocentric Spatial Descriptor for Place Recognition Within 3D Point Cloud Map\",\"authors\":\"Giseop Kim, Ayoung Kim\",\"doi\":\"10.1109/IROS.2018.8593953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared to diverse feature detectors and descriptors used for visual scenes, describing a place using structural information is relatively less reported. Recent advances in simultaneous localization and mapping (SLAM) provides dense 3D maps of the environment and the localization is proposed by diverse sensors. Toward the global localization based on the structural information, we propose Scan Context, a non-histogram-based global descriptor from 3D Light Detection and Ranging (LiDAR) scans. Unlike previously reported methods, the proposed approach directly records a 3D structure of a visible space from a sensor and does not rely on a histogram or on prior training. In addition, this approach proposes the use of a similarity score to calculate the distance between two scan contexts and also a two-phase search algorithm to efficiently detect a loop. Scan context and its search algorithm make loop-detection invariant to LiDAR viewpoint changes so that loops can be detected in places such as reverse revisit and corner. Scan context performance has been evaluated via various benchmark datasets of 3D LiDAR scans, and the proposed method shows a sufficiently improved performance.\",\"PeriodicalId\":6640,\"journal\":{\"name\":\"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"404 1\",\"pages\":\"4802-4809\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"353\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2018.8593953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2018.8593953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scan Context: Egocentric Spatial Descriptor for Place Recognition Within 3D Point Cloud Map
Compared to diverse feature detectors and descriptors used for visual scenes, describing a place using structural information is relatively less reported. Recent advances in simultaneous localization and mapping (SLAM) provides dense 3D maps of the environment and the localization is proposed by diverse sensors. Toward the global localization based on the structural information, we propose Scan Context, a non-histogram-based global descriptor from 3D Light Detection and Ranging (LiDAR) scans. Unlike previously reported methods, the proposed approach directly records a 3D structure of a visible space from a sensor and does not rely on a histogram or on prior training. In addition, this approach proposes the use of a similarity score to calculate the distance between two scan contexts and also a two-phase search algorithm to efficiently detect a loop. Scan context and its search algorithm make loop-detection invariant to LiDAR viewpoint changes so that loops can be detected in places such as reverse revisit and corner. Scan context performance has been evaluated via various benchmark datasets of 3D LiDAR scans, and the proposed method shows a sufficiently improved performance.