利用辅助观测数据进行随机实验的精确无偏估计

IF 1.7 4区 医学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Causal Inference Pub Date : 2021-05-07 DOI:10.1515/jci-2022-0011
Johann A. Gagnon-Bartsch, Adam C. Sales, Edward Wu, Anthony F. Botelho, John A. Erickson, Luke W. Miratrix, N. Heffernan
{"title":"利用辅助观测数据进行随机实验的精确无偏估计","authors":"Johann A. Gagnon-Bartsch, Adam C. Sales, Edward Wu, Anthony F. Botelho, John A. Erickson, Luke W. Miratrix, N. Heffernan","doi":"10.1515/jci-2022-0011","DOIUrl":null,"url":null,"abstract":"Abstract Randomized controlled trials (RCTs) admit unconfounded design-based inference – randomization largely justifies the assumptions underlying statistical effect estimates – but often have limited sample sizes. However, researchers may have access to big observational data on covariates and outcomes from RCT nonparticipants. For example, data from A/B tests conducted within an educational technology platform exist alongside historical observational data drawn from student logs. We outline a design-based approach to using such observational data for variance reduction in RCTs. First, we use the observational data to train a machine learning algorithm predicting potential outcomes using covariates and then use that algorithm to generate predictions for RCT participants. Then, we use those predictions, perhaps alongside other covariates, to adjust causal effect estimates with a flexible, design-based covariate-adjustment routine. In this way, there is no danger of biases from the observational data leaking into the experimental estimates, which are guaranteed to be exactly unbiased regardless of whether the machine learning models are “correct” in any sense or whether the observational samples closely resemble RCT samples. We demonstrate the method in analyzing 33 randomized A/B tests and show that it decreases standard errors relative to other estimators, sometimes substantially.","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"146 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Precise unbiased estimation in randomized experiments using auxiliary observational data\",\"authors\":\"Johann A. Gagnon-Bartsch, Adam C. Sales, Edward Wu, Anthony F. Botelho, John A. Erickson, Luke W. Miratrix, N. Heffernan\",\"doi\":\"10.1515/jci-2022-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Randomized controlled trials (RCTs) admit unconfounded design-based inference – randomization largely justifies the assumptions underlying statistical effect estimates – but often have limited sample sizes. However, researchers may have access to big observational data on covariates and outcomes from RCT nonparticipants. For example, data from A/B tests conducted within an educational technology platform exist alongside historical observational data drawn from student logs. We outline a design-based approach to using such observational data for variance reduction in RCTs. First, we use the observational data to train a machine learning algorithm predicting potential outcomes using covariates and then use that algorithm to generate predictions for RCT participants. Then, we use those predictions, perhaps alongside other covariates, to adjust causal effect estimates with a flexible, design-based covariate-adjustment routine. In this way, there is no danger of biases from the observational data leaking into the experimental estimates, which are guaranteed to be exactly unbiased regardless of whether the machine learning models are “correct” in any sense or whether the observational samples closely resemble RCT samples. We demonstrate the method in analyzing 33 randomized A/B tests and show that it decreases standard errors relative to other estimators, sometimes substantially.\",\"PeriodicalId\":48576,\"journal\":{\"name\":\"Journal of Causal Inference\",\"volume\":\"146 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Causal Inference\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/jci-2022-0011\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jci-2022-0011","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 7

摘要

随机对照试验(RCTs)承认基于设计的无混杂推断——随机化在很大程度上证明了统计效应估计背后的假设——但通常样本量有限。然而,研究人员可以从RCT非参与者那里获得有关协变量和结果的大量观察数据。例如,在教育技术平台中进行的A/B测试的数据与从学生日志中提取的历史观察数据并存。我们概述了一种基于设计的方法,在随机对照试验中使用这些观察数据来减少方差。首先,我们使用观察数据来训练机器学习算法,使用协变量预测潜在结果,然后使用该算法为RCT参与者生成预测。然后,我们使用这些预测,可能与其他协变量一起,用灵活的、基于设计的协变量调整程序来调整因果效应估计。这样,就不会有观测数据泄漏到实验估计中的偏倚危险,无论机器学习模型在任何意义上是否“正确”,或者观察样本是否与RCT样本非常相似,实验估计都保证完全无偏。我们在分析33个随机A/B测试中证明了该方法,并表明它相对于其他估计器减少了标准误差,有时甚至是实质性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Precise unbiased estimation in randomized experiments using auxiliary observational data
Abstract Randomized controlled trials (RCTs) admit unconfounded design-based inference – randomization largely justifies the assumptions underlying statistical effect estimates – but often have limited sample sizes. However, researchers may have access to big observational data on covariates and outcomes from RCT nonparticipants. For example, data from A/B tests conducted within an educational technology platform exist alongside historical observational data drawn from student logs. We outline a design-based approach to using such observational data for variance reduction in RCTs. First, we use the observational data to train a machine learning algorithm predicting potential outcomes using covariates and then use that algorithm to generate predictions for RCT participants. Then, we use those predictions, perhaps alongside other covariates, to adjust causal effect estimates with a flexible, design-based covariate-adjustment routine. In this way, there is no danger of biases from the observational data leaking into the experimental estimates, which are guaranteed to be exactly unbiased regardless of whether the machine learning models are “correct” in any sense or whether the observational samples closely resemble RCT samples. We demonstrate the method in analyzing 33 randomized A/B tests and show that it decreases standard errors relative to other estimators, sometimes substantially.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Causal Inference
Journal of Causal Inference Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
14.30%
发文量
15
审稿时长
86 weeks
期刊介绍: Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.
期刊最新文献
Evaluating Boolean relationships in Configurational Comparative Methods Comparison of open-source software for producing directed acyclic graphs. LINGUISTIC FEATURES AND PRESENTATION OF MATERIALS ON ENGLISH TEXTBOOK “WHEN ENGLISH RINGS A BELL” BASED ON BSNP Heterogeneous interventional effects with multiple mediators: Semiparametric and nonparametric approaches Attributable fraction and related measures: Conceptual relations in the counterfactual framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1