低惯性和高惯性活性粒子混合体系的相分离

IF 0.8 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Acta Physica Sinica Pub Date : 2023-01-01 DOI:10.7498/aps.72.20230792
Wang Jing Jiao Yang Tian Wen-De Chen Kang, 焦阳, 田文得, 陈康
{"title":"低惯性和高惯性活性粒子混合体系的相分离","authors":"Wang Jing Jiao Yang Tian Wen-De Chen Kang, 焦阳, 田文得, 陈康","doi":"10.7498/aps.72.20230792","DOIUrl":null,"url":null,"abstract":"Active matter refers to a class of substances capable of autonomously moving by harnessing energy from their surrounding environment. These substances exhibit unique non-equilibrium phenomena, and hence have attracted great attention in the scientific community. Many active matters, such as bacteria, cells, micro-swimmers, and self-propelled colloidal particles, operate in viscous environment and their motions are usually described using overdamped models. Examples include overdamped active Brownian particle (ABP) model for self-propelled colloidal particles in solution and run-and-tumble (RTP) model for swimming bacteria. In recent years, increasing research studies have focused on the impact of inertia on the behavior of active matter. Vibrating robots, runners, flying insects, and micro-fliers are example active systems in the underdamped condition. The motion of these active matters can be modelled by underdamped Langevin equation, known as the active inertial particle (AIP) model. Previous studies have demonstrated that, similar to ABP systems, motility-induced phase separation (MIPS) phenomena also happen in AIP systems under certain density conditions. However, due to the strong collision-and-rebound effect, aggregation of AIP particles and hence the MIPS are impeded. In complex living/application environments, mixture of different active agents is often seen. Some studies on mixed systems of active matter show that the composition is an important quantity, influencing the phase separation phenomena. In this paper, we study the phase separation phenomena in mixed systems composed of low- and high-inertia active particles by underdamped Langevin dynamics simulations. We find that, compared to single-component system, the mixed systems are unexpectedly more favorable for the occurrence of phase separation at moderate overall concentration and certain range of component fraction, while more unfavorable for phase separation at high overall concentration. The underlying mechanism is that the presence of a small amount of the high-inertia particles could accelerate the motion of the low-inertia particles, and hence facilitate their aggregation and promote the phase separation. However, when the fraction of the high-inertia particles is large, frequent elastic collisions would disturb the aggregation of the low-inertia particles and suppress the occurrence of phase separation. Our results provide new sights into the collective behavior of active materials and also a reference for their design and applications.","PeriodicalId":6995,"journal":{"name":"Acta Physica Sinica","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase separation in mixed systems of active particles with low and high inertia\",\"authors\":\"Wang Jing Jiao Yang Tian Wen-De Chen Kang, 焦阳, 田文得, 陈康\",\"doi\":\"10.7498/aps.72.20230792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active matter refers to a class of substances capable of autonomously moving by harnessing energy from their surrounding environment. These substances exhibit unique non-equilibrium phenomena, and hence have attracted great attention in the scientific community. Many active matters, such as bacteria, cells, micro-swimmers, and self-propelled colloidal particles, operate in viscous environment and their motions are usually described using overdamped models. Examples include overdamped active Brownian particle (ABP) model for self-propelled colloidal particles in solution and run-and-tumble (RTP) model for swimming bacteria. In recent years, increasing research studies have focused on the impact of inertia on the behavior of active matter. Vibrating robots, runners, flying insects, and micro-fliers are example active systems in the underdamped condition. The motion of these active matters can be modelled by underdamped Langevin equation, known as the active inertial particle (AIP) model. Previous studies have demonstrated that, similar to ABP systems, motility-induced phase separation (MIPS) phenomena also happen in AIP systems under certain density conditions. However, due to the strong collision-and-rebound effect, aggregation of AIP particles and hence the MIPS are impeded. In complex living/application environments, mixture of different active agents is often seen. Some studies on mixed systems of active matter show that the composition is an important quantity, influencing the phase separation phenomena. In this paper, we study the phase separation phenomena in mixed systems composed of low- and high-inertia active particles by underdamped Langevin dynamics simulations. We find that, compared to single-component system, the mixed systems are unexpectedly more favorable for the occurrence of phase separation at moderate overall concentration and certain range of component fraction, while more unfavorable for phase separation at high overall concentration. The underlying mechanism is that the presence of a small amount of the high-inertia particles could accelerate the motion of the low-inertia particles, and hence facilitate their aggregation and promote the phase separation. However, when the fraction of the high-inertia particles is large, frequent elastic collisions would disturb the aggregation of the low-inertia particles and suppress the occurrence of phase separation. Our results provide new sights into the collective behavior of active materials and also a reference for their design and applications.\",\"PeriodicalId\":6995,\"journal\":{\"name\":\"Acta Physica Sinica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physica Sinica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.7498/aps.72.20230792\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Sinica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.7498/aps.72.20230792","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

活性物质是指一类能够利用周围环境的能量自主移动的物质。这些物质表现出独特的非平衡现象,因此引起了科学界的极大关注。许多活性物质,如细菌、细胞、微游泳者、自走胶体粒子等,都是在粘性环境中活动的,它们的运动通常用过阻尼模型来描述。例子包括溶液中自行式胶体粒子的过阻尼活性布朗粒子(ABP)模型和游动细菌的奔跑-翻滚(RTP)模型。近年来,越来越多的研究集中在惯性对活性物质行为的影响上。振动机器人、跑步者、飞虫和微型飞行器是欠阻尼条件下主动系统的例子。这些活性物质的运动可以用欠阻尼朗之万方程来模拟,称为活性惯性粒子(AIP)模型。先前的研究表明,与ABP体系类似,在一定密度条件下,AIP体系也会发生运动诱导相分离(MIPS)现象。然而,由于强烈的碰撞和反弹效应,AIP粒子的聚集受到阻碍,从而阻碍了MIPS。在复杂的生活/应用环境中,经常会看到不同活性剂的混合。对活性物质混合体系的一些研究表明,组分是影响相分离现象的一个重要量。本文通过欠阻尼朗之万动力学模拟,研究了由低惯性和高惯性活性粒子组成的混合系统中的相分离现象。我们发现,与单组分体系相比,混合体系意外地更有利于在中等总浓度和一定组分分数范围内发生相分离,而更不利于在高总浓度下发生相分离。其基本机制是少量高惯性粒子的存在可以加速低惯性粒子的运动,从而促进它们的聚集和相分离。然而,当高惯性粒子的比例较大时,频繁的弹性碰撞会干扰低惯性粒子的聚集,抑制相分离的发生。我们的研究结果为研究活性材料的集体行为提供了新的视角,也为活性材料的设计和应用提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phase separation in mixed systems of active particles with low and high inertia
Active matter refers to a class of substances capable of autonomously moving by harnessing energy from their surrounding environment. These substances exhibit unique non-equilibrium phenomena, and hence have attracted great attention in the scientific community. Many active matters, such as bacteria, cells, micro-swimmers, and self-propelled colloidal particles, operate in viscous environment and their motions are usually described using overdamped models. Examples include overdamped active Brownian particle (ABP) model for self-propelled colloidal particles in solution and run-and-tumble (RTP) model for swimming bacteria. In recent years, increasing research studies have focused on the impact of inertia on the behavior of active matter. Vibrating robots, runners, flying insects, and micro-fliers are example active systems in the underdamped condition. The motion of these active matters can be modelled by underdamped Langevin equation, known as the active inertial particle (AIP) model. Previous studies have demonstrated that, similar to ABP systems, motility-induced phase separation (MIPS) phenomena also happen in AIP systems under certain density conditions. However, due to the strong collision-and-rebound effect, aggregation of AIP particles and hence the MIPS are impeded. In complex living/application environments, mixture of different active agents is often seen. Some studies on mixed systems of active matter show that the composition is an important quantity, influencing the phase separation phenomena. In this paper, we study the phase separation phenomena in mixed systems composed of low- and high-inertia active particles by underdamped Langevin dynamics simulations. We find that, compared to single-component system, the mixed systems are unexpectedly more favorable for the occurrence of phase separation at moderate overall concentration and certain range of component fraction, while more unfavorable for phase separation at high overall concentration. The underlying mechanism is that the presence of a small amount of the high-inertia particles could accelerate the motion of the low-inertia particles, and hence facilitate their aggregation and promote the phase separation. However, when the fraction of the high-inertia particles is large, frequent elastic collisions would disturb the aggregation of the low-inertia particles and suppress the occurrence of phase separation. Our results provide new sights into the collective behavior of active materials and also a reference for their design and applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Physica Sinica
Acta Physica Sinica 物理-物理:综合
CiteScore
1.70
自引率
30.00%
发文量
31245
审稿时长
1.9 months
期刊介绍: Acta Physica Sinica (Acta Phys. Sin.) is supervised by Chinese Academy of Sciences and sponsored by Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences. Published by Chinese Physical Society and launched in 1933, it is a semimonthly journal with about 40 articles per issue. It publishes original and top quality research papers, rapid communications and reviews in all branches of physics in Chinese. Acta Phys. Sin. enjoys high reputation among Chinese physics journals and plays a key role in bridging China and rest of the world in physics research. Specific areas of interest include: Condensed matter and materials physics; Atomic, molecular, and optical physics; Statistical, nonlinear, and soft matter physics; Plasma physics; Interdisciplinary physics.
期刊最新文献
Simulation method of urban evacuation based on mesoscopic cellular automata Medium Correction to Gravitational Form Factors Research progress of applications of freestanding single crystal oxide thin film Research progress of ultra-high spatiotemporal resolved microscopy High-fidelity single-qubit gates of a strong driven singlet-triplet qubit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1