{"title":"深度图流SVDD:网络物理系统中的异常检测","authors":"Ehtesamul Azim, Dongjie Wang, Yanjie Fu","doi":"10.48550/arXiv.2302.12918","DOIUrl":null,"url":null,"abstract":"Our work focuses on anomaly detection in cyber-physical systems. Prior literature has three limitations: (1) Failing to capture long-delayed patterns in system anomalies; (2) Ignoring dynamic changes in sensor connections; (3) The curse of high-dimensional data samples. These limit the detection performance and usefulness of existing works. To address them, we propose a new approach called deep graph stream support vector data description (SVDD) for anomaly detection. Specifically, we first use a transformer to preserve both short and long temporal patterns of monitoring data in temporal embeddings. Then we cluster these embeddings according to sensor type and utilize them to estimate the change in connectivity between various sensors to construct a new weighted graph. The temporal embeddings are mapped to the new graph as node attributes to form weighted attributed graph. We input the graph into a variational graph auto-encoder model to learn final spatio-temporal representation. Finally, we learn a hypersphere that encompasses normal embeddings and predict the system status by calculating the distances between the hypersphere and data samples. Extensive experiments validate the superiority of our model, which improves F1-score by 35.87%, AUC by 19.32%, while being 32 times faster than the best baseline at training and inference.","PeriodicalId":91995,"journal":{"name":"Advances in Knowledge Discovery and Data Mining : 21st Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea, May 23-26, 2017, Proceedings. Part I. Pacific-Asia Conference on Knowledge Discovery and Data Mining (21st : 2017 : Cheju Isl...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Graph Stream SVDD: Anomaly Detection in Cyber-Physical Systems\",\"authors\":\"Ehtesamul Azim, Dongjie Wang, Yanjie Fu\",\"doi\":\"10.48550/arXiv.2302.12918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our work focuses on anomaly detection in cyber-physical systems. Prior literature has three limitations: (1) Failing to capture long-delayed patterns in system anomalies; (2) Ignoring dynamic changes in sensor connections; (3) The curse of high-dimensional data samples. These limit the detection performance and usefulness of existing works. To address them, we propose a new approach called deep graph stream support vector data description (SVDD) for anomaly detection. Specifically, we first use a transformer to preserve both short and long temporal patterns of monitoring data in temporal embeddings. Then we cluster these embeddings according to sensor type and utilize them to estimate the change in connectivity between various sensors to construct a new weighted graph. The temporal embeddings are mapped to the new graph as node attributes to form weighted attributed graph. We input the graph into a variational graph auto-encoder model to learn final spatio-temporal representation. Finally, we learn a hypersphere that encompasses normal embeddings and predict the system status by calculating the distances between the hypersphere and data samples. Extensive experiments validate the superiority of our model, which improves F1-score by 35.87%, AUC by 19.32%, while being 32 times faster than the best baseline at training and inference.\",\"PeriodicalId\":91995,\"journal\":{\"name\":\"Advances in Knowledge Discovery and Data Mining : 21st Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea, May 23-26, 2017, Proceedings. Part I. Pacific-Asia Conference on Knowledge Discovery and Data Mining (21st : 2017 : Cheju Isl...\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Knowledge Discovery and Data Mining : 21st Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea, May 23-26, 2017, Proceedings. Part I. Pacific-Asia Conference on Knowledge Discovery and Data Mining (21st : 2017 : Cheju Isl...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2302.12918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Knowledge Discovery and Data Mining : 21st Pacific-Asia Conference, PAKDD 2017, Jeju, South Korea, May 23-26, 2017, Proceedings. Part I. Pacific-Asia Conference on Knowledge Discovery and Data Mining (21st : 2017 : Cheju Isl...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.12918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们的工作重点是网络物理系统中的异常检测。先前的文献有三个局限性:(1)未能捕获系统异常中的长延迟模式;(2)忽略传感器连接的动态变化;(3)高维数据样本的诅咒。这些限制了现有工作的检测性能和有用性。为了解决这些问题,我们提出了一种新的异常检测方法,称为深度图流支持向量数据描述(SVDD)。具体来说,我们首先使用转换器在时间嵌入中保存监测数据的短时间和长时间模式。然后根据传感器类型对这些嵌入进行聚类,并利用它们来估计各传感器之间的连通性变化,从而构造新的加权图。将时间嵌入作为节点属性映射到新图上,形成加权属性图。我们将图输入到变分图自编码器模型中,以学习最终的时空表示。最后,我们学习了一个包含正常嵌入的超球,并通过计算超球和数据样本之间的距离来预测系统状态。大量的实验验证了我们的模型的优越性,F1-score提高了35.87%,AUC提高了19.32%,在训练和推理方面比最佳基线快32倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Graph Stream SVDD: Anomaly Detection in Cyber-Physical Systems
Our work focuses on anomaly detection in cyber-physical systems. Prior literature has three limitations: (1) Failing to capture long-delayed patterns in system anomalies; (2) Ignoring dynamic changes in sensor connections; (3) The curse of high-dimensional data samples. These limit the detection performance and usefulness of existing works. To address them, we propose a new approach called deep graph stream support vector data description (SVDD) for anomaly detection. Specifically, we first use a transformer to preserve both short and long temporal patterns of monitoring data in temporal embeddings. Then we cluster these embeddings according to sensor type and utilize them to estimate the change in connectivity between various sensors to construct a new weighted graph. The temporal embeddings are mapped to the new graph as node attributes to form weighted attributed graph. We input the graph into a variational graph auto-encoder model to learn final spatio-temporal representation. Finally, we learn a hypersphere that encompasses normal embeddings and predict the system status by calculating the distances between the hypersphere and data samples. Extensive experiments validate the superiority of our model, which improves F1-score by 35.87%, AUC by 19.32%, while being 32 times faster than the best baseline at training and inference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GroupMixNorm Layer for Learning Fair Models Leveraged Mel Spectrograms Using Harmonic and Percussive Components in Speech Emotion Recognition An Extended Variational Mode Decomposition Algorithm Developed Speech Emotion Recognition Performance Vision Transformers for Small Histological Datasets Learned Through Knowledge Distillation Fast and Attributed Change Detection on Dynamic Graphs with Density of States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1