用COGARCH(p,q)模型测量风险

F. Bianchi, L. Mercuri, Edit Rroji
{"title":"用COGARCH(p,q)模型测量风险","authors":"F. Bianchi, L. Mercuri, Edit Rroji","doi":"10.2139/ssrn.2852858","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a multivariate Independent Component COGARCH(p,q) model for financial time series. We determine optimal portfolio weights obtained as a solution of different static asset allocation problems. Empirical analysis is conducted on two datasets. The first is composed by 154 European hedge funds tracking the performance of the FTSE100 Index while the second contains the members of FTSE100. The performances of different strategies are investigated from an out-of-sample perspective.","PeriodicalId":11800,"journal":{"name":"ERN: Stock Market Risk (Topic)","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring Risk with COGARCH(p,q) Models\",\"authors\":\"F. Bianchi, L. Mercuri, Edit Rroji\",\"doi\":\"10.2139/ssrn.2852858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a multivariate Independent Component COGARCH(p,q) model for financial time series. We determine optimal portfolio weights obtained as a solution of different static asset allocation problems. Empirical analysis is conducted on two datasets. The first is composed by 154 European hedge funds tracking the performance of the FTSE100 Index while the second contains the members of FTSE100. The performances of different strategies are investigated from an out-of-sample perspective.\",\"PeriodicalId\":11800,\"journal\":{\"name\":\"ERN: Stock Market Risk (Topic)\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Stock Market Risk (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2852858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Stock Market Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2852858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了金融时间序列的多元独立分量COGARCH(p,q)模型。作为不同静态资产配置问题的解,我们确定了最优的投资组合权重。对两个数据集进行了实证分析。前者由追踪富时100指数表现的154家欧洲对冲基金组成,后者则包含富时100指数的成分股。从样本外的角度考察了不同策略的绩效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measuring Risk with COGARCH(p,q) Models
In this paper we introduce a multivariate Independent Component COGARCH(p,q) model for financial time series. We determine optimal portfolio weights obtained as a solution of different static asset allocation problems. Empirical analysis is conducted on two datasets. The first is composed by 154 European hedge funds tracking the performance of the FTSE100 Index while the second contains the members of FTSE100. The performances of different strategies are investigated from an out-of-sample perspective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Risk-Return Tradeoff Among Equity Factors Predictive Regressions under Arbitrary Persistence and Stock Return Predictability News and Trading After Hours High-Frequency Arbitrage and Market Illiquidity President’s Confidence and the Stock Market Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1