Xenos Chang-Shuo Lin, D. Miao, Ying-I Lee, Yu Zheng
{"title":"具有不同跳跃程度的双指数跳跃-扩散模型下期权定价","authors":"Xenos Chang-Shuo Lin, D. Miao, Ying-I Lee, Yu Zheng","doi":"10.1017/s0269964822000493","DOIUrl":null,"url":null,"abstract":"This paper extends the standard double-exponential jump-diffusion (DEJD) model to allow for successive jumps to bring about different effects on the asset price process. The double-exponentially distributed jump sizes are no longer assumed to have the same parameters; instead, we assume that these parameters may take a series of different values to reflect growing or diminishing effects from these jumps. The mathematical analysis of the stock price requires an introduction of a number of distributions that are extended from the hypoexponential (HE) distribution. Under such a generalized setting, the European option price is derived in closed-form which ensures its computational convenience. Through our numerical examples, we examine the effects on the return distributions from the growing and diminishing severity of the upcoming jumps expected in the near future, and investigate how the option prices and the shapes of the implied volatility smiles are influenced by the varying severity of jumps. These results demonstrate the benefits of the modeling flexibility provided by our extension.","PeriodicalId":54582,"journal":{"name":"Probability in the Engineering and Informational Sciences","volume":"14 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Option pricing under a double-exponential jump-diffusion model with varying severity of jumps\",\"authors\":\"Xenos Chang-Shuo Lin, D. Miao, Ying-I Lee, Yu Zheng\",\"doi\":\"10.1017/s0269964822000493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper extends the standard double-exponential jump-diffusion (DEJD) model to allow for successive jumps to bring about different effects on the asset price process. The double-exponentially distributed jump sizes are no longer assumed to have the same parameters; instead, we assume that these parameters may take a series of different values to reflect growing or diminishing effects from these jumps. The mathematical analysis of the stock price requires an introduction of a number of distributions that are extended from the hypoexponential (HE) distribution. Under such a generalized setting, the European option price is derived in closed-form which ensures its computational convenience. Through our numerical examples, we examine the effects on the return distributions from the growing and diminishing severity of the upcoming jumps expected in the near future, and investigate how the option prices and the shapes of the implied volatility smiles are influenced by the varying severity of jumps. These results demonstrate the benefits of the modeling flexibility provided by our extension.\",\"PeriodicalId\":54582,\"journal\":{\"name\":\"Probability in the Engineering and Informational Sciences\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability in the Engineering and Informational Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/s0269964822000493\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability in the Engineering and Informational Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/s0269964822000493","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Option pricing under a double-exponential jump-diffusion model with varying severity of jumps
This paper extends the standard double-exponential jump-diffusion (DEJD) model to allow for successive jumps to bring about different effects on the asset price process. The double-exponentially distributed jump sizes are no longer assumed to have the same parameters; instead, we assume that these parameters may take a series of different values to reflect growing or diminishing effects from these jumps. The mathematical analysis of the stock price requires an introduction of a number of distributions that are extended from the hypoexponential (HE) distribution. Under such a generalized setting, the European option price is derived in closed-form which ensures its computational convenience. Through our numerical examples, we examine the effects on the return distributions from the growing and diminishing severity of the upcoming jumps expected in the near future, and investigate how the option prices and the shapes of the implied volatility smiles are influenced by the varying severity of jumps. These results demonstrate the benefits of the modeling flexibility provided by our extension.
期刊介绍:
The primary focus of the journal is on stochastic modelling in the physical and engineering sciences, with particular emphasis on queueing theory, reliability theory, inventory theory, simulation, mathematical finance and probabilistic networks and graphs. Papers on analytic properties and related disciplines are also considered, as well as more general papers on applied and computational probability, if appropriate. Readers include academics working in statistics, operations research, computer science, engineering, management science and physical sciences as well as industrial practitioners engaged in telecommunications, computer science, financial engineering, operations research and management science.