Yuanrong Li, Mingjun Xie, S. Lv, Yuan Sun, Zhuang Li, Zeming Gu, Yongxing He
{"title":"受剪纸启发,一种用于细胞在气液界面拉伸的仿生可控应变膜","authors":"Yuanrong Li, Mingjun Xie, S. Lv, Yuan Sun, Zhuang Li, Zeming Gu, Yongxing He","doi":"10.1088/2631-7990/acef77","DOIUrl":null,"url":null,"abstract":"Lung diseases associated with alveoli, such as acute respiratory distress syndrome, have posed a long-term threat to human health. However, an in vitro model capable of simulating different deformations of the alveoli and a suitable material for mimicking basement membrane are currently lacking. Here, we present an innovative biomimetic controllable strain membrane (BCSM) at an air–liquid interface (ALI) to reconstruct alveolar respiration. The BCSM consists of a high-precision three-dimensional printing melt-electrowritten polycaprolactone (PCL) mesh, coated with a hydrogel substrate—to simulate the important functions (such as stiffness, porosity, wettability, and ALI) of alveolar microenvironments, and seeded pulmonary epithelial cells and vascular endothelial cells on either side, respectively. Inspired by papercutting, the BCSM was fabricated in the plane while it operated in three dimensions. A series of the topological structure of the BCSM was designed to control various local-area strain, mimicking alveolar varied deformation. Lopinavir/ritonavir could reduce Lamin A expression under over-stretch condition, which might be effective in preventing ventilator-induced lung injury. The biomimetic lung-unit model with BCSM has broader application prospects in alveoli-related research in the future, such as in drug toxicology and metabolism.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"2023 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bionic controllable strain membrane for cell stretching at air–liquid interface inspired by papercutting\",\"authors\":\"Yuanrong Li, Mingjun Xie, S. Lv, Yuan Sun, Zhuang Li, Zeming Gu, Yongxing He\",\"doi\":\"10.1088/2631-7990/acef77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung diseases associated with alveoli, such as acute respiratory distress syndrome, have posed a long-term threat to human health. However, an in vitro model capable of simulating different deformations of the alveoli and a suitable material for mimicking basement membrane are currently lacking. Here, we present an innovative biomimetic controllable strain membrane (BCSM) at an air–liquid interface (ALI) to reconstruct alveolar respiration. The BCSM consists of a high-precision three-dimensional printing melt-electrowritten polycaprolactone (PCL) mesh, coated with a hydrogel substrate—to simulate the important functions (such as stiffness, porosity, wettability, and ALI) of alveolar microenvironments, and seeded pulmonary epithelial cells and vascular endothelial cells on either side, respectively. Inspired by papercutting, the BCSM was fabricated in the plane while it operated in three dimensions. A series of the topological structure of the BCSM was designed to control various local-area strain, mimicking alveolar varied deformation. Lopinavir/ritonavir could reduce Lamin A expression under over-stretch condition, which might be effective in preventing ventilator-induced lung injury. The biomimetic lung-unit model with BCSM has broader application prospects in alveoli-related research in the future, such as in drug toxicology and metabolism.\",\"PeriodicalId\":52353,\"journal\":{\"name\":\"International Journal of Extreme Manufacturing\",\"volume\":\"2023 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Extreme Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-7990/acef77\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/acef77","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
A bionic controllable strain membrane for cell stretching at air–liquid interface inspired by papercutting
Lung diseases associated with alveoli, such as acute respiratory distress syndrome, have posed a long-term threat to human health. However, an in vitro model capable of simulating different deformations of the alveoli and a suitable material for mimicking basement membrane are currently lacking. Here, we present an innovative biomimetic controllable strain membrane (BCSM) at an air–liquid interface (ALI) to reconstruct alveolar respiration. The BCSM consists of a high-precision three-dimensional printing melt-electrowritten polycaprolactone (PCL) mesh, coated with a hydrogel substrate—to simulate the important functions (such as stiffness, porosity, wettability, and ALI) of alveolar microenvironments, and seeded pulmonary epithelial cells and vascular endothelial cells on either side, respectively. Inspired by papercutting, the BCSM was fabricated in the plane while it operated in three dimensions. A series of the topological structure of the BCSM was designed to control various local-area strain, mimicking alveolar varied deformation. Lopinavir/ritonavir could reduce Lamin A expression under over-stretch condition, which might be effective in preventing ventilator-induced lung injury. The biomimetic lung-unit model with BCSM has broader application prospects in alveoli-related research in the future, such as in drug toxicology and metabolism.
期刊介绍:
The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.