Hamza Rghioui, A. Marjaoui, M. A. Tamerd, M. Zanouni
{"title":"双轴应变对皱化Si2SeTe单层材料电子、光学和热电性能影响的研究","authors":"Hamza Rghioui, A. Marjaoui, M. A. Tamerd, M. Zanouni","doi":"10.4028/p-19tzA3","DOIUrl":null,"url":null,"abstract":"In this paper, we have investigated the electronic, optical and thermoelectric properties of the puckered Si2SeTe monolayer when subjected to various levels of biaxial strain ranging from −10% to +10%. The structural stability, as determined by the cohesive energy, shows that the puckered Si2SeTe structure is energetically stable. The results reveal that the unstrained Si2SeTe monolayer is an indirect band gap semiconductor with an energy gap of 0.5 eV, which can be effectively adjusted with biaxial strain. The semiconductor–metal phase transition occurs when the monolayer is compressed by −4% biaxial strain. Moreover, the optical properties, including the real ε1(ω) and imaginary ε2(ω) components of the dielectric function, extinction coefficient K(ω), reflectivity R(ω), refractive index n (ω), and absorption coefficient α (ω), were evaluated as a function of the energy of light and under biaxial strain. We discovered that the puckered Si2SeTe monolayer is capable of absorbing light in the visible region of 64.7×104 cm−1, 73.8×104 cm−1 for equilibrium state and under the compression strain (−8%), respectively. Lastly, the influence of biaxial strain on thermoelectric properties such as electrical conductivity (σ/τ), electronic thermal conductivity (ke/τ), Seebeck coefficients, and electronic figure of merit (ZTe) was studied. The calculated electronic figure of merit ZTe presents an improvement in the p-type doping (μ<0) under the tensile biaxial strain. Taking into account the optical and thermoelectric properties, the puckered Si2SeTe monolayer is a promising material for use in optoelectronic devices and energy conversion technologies.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"2 1","pages":"123 - 135"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the Effects of Biaxial Strain on the Electronic, Optical and Thermoelectric Properties of the Puckered Si2SeTe Monolayer\",\"authors\":\"Hamza Rghioui, A. Marjaoui, M. A. Tamerd, M. Zanouni\",\"doi\":\"10.4028/p-19tzA3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have investigated the electronic, optical and thermoelectric properties of the puckered Si2SeTe monolayer when subjected to various levels of biaxial strain ranging from −10% to +10%. The structural stability, as determined by the cohesive energy, shows that the puckered Si2SeTe structure is energetically stable. The results reveal that the unstrained Si2SeTe monolayer is an indirect band gap semiconductor with an energy gap of 0.5 eV, which can be effectively adjusted with biaxial strain. The semiconductor–metal phase transition occurs when the monolayer is compressed by −4% biaxial strain. Moreover, the optical properties, including the real ε1(ω) and imaginary ε2(ω) components of the dielectric function, extinction coefficient K(ω), reflectivity R(ω), refractive index n (ω), and absorption coefficient α (ω), were evaluated as a function of the energy of light and under biaxial strain. We discovered that the puckered Si2SeTe monolayer is capable of absorbing light in the visible region of 64.7×104 cm−1, 73.8×104 cm−1 for equilibrium state and under the compression strain (−8%), respectively. Lastly, the influence of biaxial strain on thermoelectric properties such as electrical conductivity (σ/τ), electronic thermal conductivity (ke/τ), Seebeck coefficients, and electronic figure of merit (ZTe) was studied. The calculated electronic figure of merit ZTe presents an improvement in the p-type doping (μ<0) under the tensile biaxial strain. Taking into account the optical and thermoelectric properties, the puckered Si2SeTe monolayer is a promising material for use in optoelectronic devices and energy conversion technologies.\",\"PeriodicalId\":16525,\"journal\":{\"name\":\"Journal of Nano Research\",\"volume\":\"2 1\",\"pages\":\"123 - 135\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4028/p-19tzA3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4028/p-19tzA3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigating the Effects of Biaxial Strain on the Electronic, Optical and Thermoelectric Properties of the Puckered Si2SeTe Monolayer
In this paper, we have investigated the electronic, optical and thermoelectric properties of the puckered Si2SeTe monolayer when subjected to various levels of biaxial strain ranging from −10% to +10%. The structural stability, as determined by the cohesive energy, shows that the puckered Si2SeTe structure is energetically stable. The results reveal that the unstrained Si2SeTe monolayer is an indirect band gap semiconductor with an energy gap of 0.5 eV, which can be effectively adjusted with biaxial strain. The semiconductor–metal phase transition occurs when the monolayer is compressed by −4% biaxial strain. Moreover, the optical properties, including the real ε1(ω) and imaginary ε2(ω) components of the dielectric function, extinction coefficient K(ω), reflectivity R(ω), refractive index n (ω), and absorption coefficient α (ω), were evaluated as a function of the energy of light and under biaxial strain. We discovered that the puckered Si2SeTe monolayer is capable of absorbing light in the visible region of 64.7×104 cm−1, 73.8×104 cm−1 for equilibrium state and under the compression strain (−8%), respectively. Lastly, the influence of biaxial strain on thermoelectric properties such as electrical conductivity (σ/τ), electronic thermal conductivity (ke/τ), Seebeck coefficients, and electronic figure of merit (ZTe) was studied. The calculated electronic figure of merit ZTe presents an improvement in the p-type doping (μ<0) under the tensile biaxial strain. Taking into account the optical and thermoelectric properties, the puckered Si2SeTe monolayer is a promising material for use in optoelectronic devices and energy conversion technologies.
期刊介绍:
"Journal of Nano Research" (JNanoR) is a multidisciplinary journal, which publishes high quality scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of achieved results.
"Journal of Nano Research" is one of the largest periodicals in the field of nanoscience and nanotechnologies. All papers are peer-reviewed and edited.
Authors retain the right to publish an extended and significantly updated version in another periodical.