M. H. Mamat, Z. Khusaimi, M. F. Malik, M. M. Zahidi, M. Mahmood
{"title":"垂直排列铝掺杂氧化锌纳米棒阵列的紫外传感特性及场发射特性","authors":"M. H. Mamat, Z. Khusaimi, M. F. Malik, M. M. Zahidi, M. Mahmood","doi":"10.1063/1.3587035","DOIUrl":null,"url":null,"abstract":"Vertically aligned Zinc oxide (ZnO) nanostructures become very important and useful materials in nanodevices fabrications due to its outstanding characteristics such as high aspect ratio, high electron mobility and large surface area availability [1,2]. ZnO is categorized to II–VI group compound semiconductor with band gap energy 3.2∼3.3 eV and exciton binding energy of 60 meV. It is wide band gap energy material with hexagonal wurtzite structure (lattice parameter: a = 0.3296 nm and c = 0.52065 nm) which is non-toxic, radiation resisted and abundant. Recently, various kind of ZnO nanostructures growth has been reported including nanorod, nanotube and nanobelt [3–5].","PeriodicalId":6354,"journal":{"name":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ultra-violet sensing characteristic and field emission properties of vertically aligned aluminum doped zinc oxide nanorod arrays\",\"authors\":\"M. H. Mamat, Z. Khusaimi, M. F. Malik, M. M. Zahidi, M. Mahmood\",\"doi\":\"10.1063/1.3587035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vertically aligned Zinc oxide (ZnO) nanostructures become very important and useful materials in nanodevices fabrications due to its outstanding characteristics such as high aspect ratio, high electron mobility and large surface area availability [1,2]. ZnO is categorized to II–VI group compound semiconductor with band gap energy 3.2∼3.3 eV and exciton binding energy of 60 meV. It is wide band gap energy material with hexagonal wurtzite structure (lattice parameter: a = 0.3296 nm and c = 0.52065 nm) which is non-toxic, radiation resisted and abundant. Recently, various kind of ZnO nanostructures growth has been reported including nanorod, nanotube and nanobelt [3–5].\",\"PeriodicalId\":6354,\"journal\":{\"name\":\"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.3587035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Enabling Science and Nanotechnology (ESciNano)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.3587035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultra-violet sensing characteristic and field emission properties of vertically aligned aluminum doped zinc oxide nanorod arrays
Vertically aligned Zinc oxide (ZnO) nanostructures become very important and useful materials in nanodevices fabrications due to its outstanding characteristics such as high aspect ratio, high electron mobility and large surface area availability [1,2]. ZnO is categorized to II–VI group compound semiconductor with band gap energy 3.2∼3.3 eV and exciton binding energy of 60 meV. It is wide band gap energy material with hexagonal wurtzite structure (lattice parameter: a = 0.3296 nm and c = 0.52065 nm) which is non-toxic, radiation resisted and abundant. Recently, various kind of ZnO nanostructures growth has been reported including nanorod, nanotube and nanobelt [3–5].