{"title":"使用有损耗传输线的均匀波束宽度超宽带馈电天线","authors":"C. Pfeiffer, Thomas Steffen, G. Kakas","doi":"10.2528/pier19081202","DOIUrl":null,"url":null,"abstract":"The ideal ultra-wideband (UWB) antenna feed for lens and reflector systems radiates a uniform and customizable beamwidth vs. frequency. Here, a new antenna concept for radiating frequency-independent Gaussian beams with arbitrary bandwidths and beamwidths is reported. It is analytically shown how to resistively load a transmission line network to maintain a Gaussian amplitude taper across an antenna array aperture. In contrast to many other feed antennas, the radiation properties here can be tailored without time-consuming full wave optimizations. The radiated beamwidth, bandwidth, antenna size, radiation efficiency, and gain can all be quickly estimated using the derived closed-form expressions. An example, 16 × 16 Vivaldi element array is fed with a network of resistively loaded microstrip lines. The simulated array radiates a Gaussian beam with 10 dB full beamwidth of 35◦ ± 5◦ and directivity of 20 dB ± 1.5 dB over 6.5GHz–19GHz (3 : 1 bandwidth ratio). However, the radiation efficiency is inherently low due to the large loss associated with generating the Gaussian amplitude taper at all frequencies. The example array has a simulated radiation efficiency of 1% at the higher operating frequencies. The array was fabricated and measured. The measured beamwidths agree well with simulation to validate the reported theory. This architecture is a particularly attractive option for feed antennas that require customizable directivities, and can tolerate low radiation efficiencies such as test and measurement.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"UNIFORM BEAMWIDTH UWB FEED ANTENNA USING LOSSY TRANSMISSION LINES\",\"authors\":\"C. Pfeiffer, Thomas Steffen, G. Kakas\",\"doi\":\"10.2528/pier19081202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ideal ultra-wideband (UWB) antenna feed for lens and reflector systems radiates a uniform and customizable beamwidth vs. frequency. Here, a new antenna concept for radiating frequency-independent Gaussian beams with arbitrary bandwidths and beamwidths is reported. It is analytically shown how to resistively load a transmission line network to maintain a Gaussian amplitude taper across an antenna array aperture. In contrast to many other feed antennas, the radiation properties here can be tailored without time-consuming full wave optimizations. The radiated beamwidth, bandwidth, antenna size, radiation efficiency, and gain can all be quickly estimated using the derived closed-form expressions. An example, 16 × 16 Vivaldi element array is fed with a network of resistively loaded microstrip lines. The simulated array radiates a Gaussian beam with 10 dB full beamwidth of 35◦ ± 5◦ and directivity of 20 dB ± 1.5 dB over 6.5GHz–19GHz (3 : 1 bandwidth ratio). However, the radiation efficiency is inherently low due to the large loss associated with generating the Gaussian amplitude taper at all frequencies. The example array has a simulated radiation efficiency of 1% at the higher operating frequencies. The array was fabricated and measured. The measured beamwidths agree well with simulation to validate the reported theory. This architecture is a particularly attractive option for feed antennas that require customizable directivities, and can tolerate low radiation efficiencies such as test and measurement.\",\"PeriodicalId\":90705,\"journal\":{\"name\":\"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2528/pier19081202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/pier19081202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
UNIFORM BEAMWIDTH UWB FEED ANTENNA USING LOSSY TRANSMISSION LINES
The ideal ultra-wideband (UWB) antenna feed for lens and reflector systems radiates a uniform and customizable beamwidth vs. frequency. Here, a new antenna concept for radiating frequency-independent Gaussian beams with arbitrary bandwidths and beamwidths is reported. It is analytically shown how to resistively load a transmission line network to maintain a Gaussian amplitude taper across an antenna array aperture. In contrast to many other feed antennas, the radiation properties here can be tailored without time-consuming full wave optimizations. The radiated beamwidth, bandwidth, antenna size, radiation efficiency, and gain can all be quickly estimated using the derived closed-form expressions. An example, 16 × 16 Vivaldi element array is fed with a network of resistively loaded microstrip lines. The simulated array radiates a Gaussian beam with 10 dB full beamwidth of 35◦ ± 5◦ and directivity of 20 dB ± 1.5 dB over 6.5GHz–19GHz (3 : 1 bandwidth ratio). However, the radiation efficiency is inherently low due to the large loss associated with generating the Gaussian amplitude taper at all frequencies. The example array has a simulated radiation efficiency of 1% at the higher operating frequencies. The array was fabricated and measured. The measured beamwidths agree well with simulation to validate the reported theory. This architecture is a particularly attractive option for feed antennas that require customizable directivities, and can tolerate low radiation efficiencies such as test and measurement.