A. Hemmericl, A. Gorlitz, M. Weidemuller, T. Hansch
{"title":"光学晶格的新实验","authors":"A. Hemmericl, A. Gorlitz, M. Weidemuller, T. Hansch","doi":"10.1109/EQEC.1996.561509","DOIUrl":null,"url":null,"abstract":"rly ~II~II~IIIII ~ . l twry of dectrical coi~drirtivity iii crystal latticcs hy I3loch aiid Zener [ I ] I(YI t,o the striking predirtion that a lioniogciicons static clcctric ficld iiiduces ail oscillatory rather thau u~ i i fo r~ r i notion of the electrons. l lcrr wc preseut Blocli oscillations o f atoiiis i i i I.he fundanieutal and iii the first excit.ccl cwxgy baiid of a periodic optical potential 121. ‘lliis poteiitial results from the light-shift of the grouud state of atoms illuminatr t l hy a laser stailding wave. The laser is detuncd far from any atomic resouancc so tliat spoiitancoiis emission can he neglected. Using one-dimensional Ranian laser cooling [3,4] we first prepare a gas of free atoms with a ~nomentum spread 61, = hk/4 in the direction of the standing wave, where hk i s tlic pliol.on ~nonrei~tum. The corresponding atomic coherence length h/6p extends over ~everal periods d = X/2 = 7 r / k of the optical lattice. I3y adiabatically switching on thc light potential this initial momentum distribution is turned into a statistical mixture of 131ocli stales i n the ground energy band with a quasi-rnomnrtu~n width 6y = 6 p / h much snrallcithan the width 2k of the Brillouin zone. We mimic a constant external force by inl.roducing a t.uiiable frequency difference 6 v ( t ) between the two counterpropagating laser waves rreal.ing the optical potential. For a linear variation io time of 6v( l ) a constant inerl.ial force 1.’ = m a = -mX$6v( t ) /2 is exerted 011 the atoms in the frame of the slanding wave. After a given evolution time, we abruptly switch off the light potential and inrasure thr momentum distribution of the Blocli sl.ate with a resolution of R k / l S . ‘I’lie nieaii atomic velocity displays oscillations with periods in the millisecond range and a~nplit~ndes between 0.7 and 0.3 UR for potential depths (io between 0.8 and 5.6 ER. where i>f? = h.k/7n is the recoil velocity and ER = (hk)’/2m the recoil energy. We measured positive and negative effective masses, differeut from the mass of the free cesium atom. Froiu the measured velocity curves we can reconstruct the shape of the fundamental energy band. Wr have also calculated numerically the band structure for our experimental values of [ io. The agreement with the experimental data is quite good. \\4k have niadc investigations of atom acceleratiori in (.he case of deeper potentials up to r:, = 10EJ3. We could still observe Bloch states after more thau 40 oscillation periods. 111 t.lrc Iaboralory frame, this corresponds to a coherent mom en tun^ transfer of S O U . prodnring aii atomic beam with subrecoil momentum spread (h1;/4) in the beam direction.","PeriodicalId":11780,"journal":{"name":"EQEC'96. 1996 European Quantum Electronic Conference","volume":"35 1","pages":"5-5"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Experiments with Optical Lattices\",\"authors\":\"A. Hemmericl, A. Gorlitz, M. Weidemuller, T. Hansch\",\"doi\":\"10.1109/EQEC.1996.561509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"rly ~II~II~IIIII ~ . l twry of dectrical coi~drirtivity iii crystal latticcs hy I3loch aiid Zener [ I ] I(YI t,o the striking predirtion that a lioniogciicons static clcctric ficld iiiduces ail oscillatory rather thau u~ i i fo r~ r i notion of the electrons. l lcrr wc preseut Blocli oscillations o f atoiiis i i i I.he fundanieutal and iii the first excit.ccl cwxgy baiid of a periodic optical potential 121. ‘lliis poteiitial results from the light-shift of the grouud state of atoms illuminatr t l hy a laser stailding wave. The laser is detuncd far from any atomic resouancc so tliat spoiitancoiis emission can he neglected. Using one-dimensional Ranian laser cooling [3,4] we first prepare a gas of free atoms with a ~nomentum spread 61, = hk/4 in the direction of the standing wave, where hk i s tlic pliol.on ~nonrei~tum. The corresponding atomic coherence length h/6p extends over ~everal periods d = X/2 = 7 r / k of the optical lattice. I3y adiabatically switching on thc light potential this initial momentum distribution is turned into a statistical mixture of 131ocli stales i n the ground energy band with a quasi-rnomnrtu~n width 6y = 6 p / h much snrallcithan the width 2k of the Brillouin zone. We mimic a constant external force by inl.roducing a t.uiiable frequency difference 6 v ( t ) between the two counterpropagating laser waves rreal.ing the optical potential. For a linear variation io time of 6v( l ) a constant inerl.ial force 1.’ = m a = -mX$6v( t ) /2 is exerted 011 the atoms in the frame of the slanding wave. After a given evolution time, we abruptly switch off the light potential and inrasure thr momentum distribution of the Blocli sl.ate with a resolution of R k / l S . ‘I’lie nieaii atomic velocity displays oscillations with periods in the millisecond range and a~nplit~ndes between 0.7 and 0.3 UR for potential depths (io between 0.8 and 5.6 ER. where i>f? = h.k/7n is the recoil velocity and ER = (hk)’/2m the recoil energy. We measured positive and negative effective masses, differeut from the mass of the free cesium atom. Froiu the measured velocity curves we can reconstruct the shape of the fundamental energy band. Wr have also calculated numerically the band structure for our experimental values of [ io. The agreement with the experimental data is quite good. \\\\4k have niadc investigations of atom acceleratiori in (.he case of deeper potentials up to r:, = 10EJ3. We could still observe Bloch states after more thau 40 oscillation periods. 111 t.lrc Iaboralory frame, this corresponds to a coherent mom en tun^ transfer of S O U . prodnring aii atomic beam with subrecoil momentum spread (h1;/4) in the beam direction.\",\"PeriodicalId\":11780,\"journal\":{\"name\":\"EQEC'96. 1996 European Quantum Electronic Conference\",\"volume\":\"35 1\",\"pages\":\"5-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EQEC'96. 1996 European Quantum Electronic Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EQEC.1996.561509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EQEC'96. 1996 European Quantum Electronic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EQEC.1996.561509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
rly ~II~II~IIIII ~。l twry dectrical coi ~ drirtivity三世水晶latticcs hy I3loch携带齐纳(我)我(YI t o的惊人predirtion lioniogciicons静态clcctric ficld iiiduces苦恼振荡,而肖u ~我我佛~ r电子的概念。所有的函数都可以表示出函数的bloi振荡,即基本激发态和第一激发态。一个周期光势的CCL cwxy。liliis的潜在结果来自于原子基态的光移,从而产生激光驻波。激光在远离任何原子源的地方衰减,因此可以忽略任何杂波辐射。利用一维拉尼激光冷却[3,4],我们首先在驻波方向制备了一种自由原子气体,其动量分布为61,= hk/4,其中hk为最小常数。~ nonrei ~中空的。相应的原子相干长度h/6p扩展到光学晶格的~几个周期d = X/2 = 7 r / k。当光势绝热开启时,初始动量分布变成了地面能带上1310i - 1的统计混合,其准稳态宽度为6y = 6p / h,远小于布里渊带的宽度2k。我们用1来模拟恒定的外力。在两个反向传播的激光波之间产生6 v (t)的可调频率差。Ing光势。对于线性变化时间为6v(l)的恒定内蕴。力1。' = m a = -mX$6v(t) /2施加在倾斜波框架内的原子上。在给定的演化时间后,我们突然关闭光势,并保证Blocli slate的动量分布,其分辨率为R k / l S。“I’lie nieaii”原子速度显示出周期在毫秒范围内的振荡,潜在深度在0.8至5.6 ER之间的~nplit~节点在0.7至0.3 UR之间。我> f在哪里?= hk /7n为后坐力速度,ER = (hk)′/2m为后坐力能量。我们测量了正负有效质量,不同于自由铯原子的质量。根据测量的速度曲线,我们可以重建基本能带的形状。我们还对实验值[o]的带结构进行了数值计算。与实验数据吻合较好。我们对宇宙中的原子加速进行了新的研究。当电位达到r:, = 10EJ3时。在40多个振荡周期后,我们仍然可以观察到布洛赫态。在实验框架中,这对应于S / U的一个连贯的母链转移。在光束方向上产生具有亚后坐力动量扩散(h1;/4)的原子束。
rly ~II~II~IIIII ~ . l twry of dectrical coi~drirtivity iii crystal latticcs hy I3loch aiid Zener [ I ] I(YI t,o the striking predirtion that a lioniogciicons static clcctric ficld iiiduces ail oscillatory rather thau u~ i i fo r~ r i notion of the electrons. l lcrr wc preseut Blocli oscillations o f atoiiis i i i I.he fundanieutal and iii the first excit.ccl cwxgy baiid of a periodic optical potential 121. ‘lliis poteiitial results from the light-shift of the grouud state of atoms illuminatr t l hy a laser stailding wave. The laser is detuncd far from any atomic resouancc so tliat spoiitancoiis emission can he neglected. Using one-dimensional Ranian laser cooling [3,4] we first prepare a gas of free atoms with a ~nomentum spread 61, = hk/4 in the direction of the standing wave, where hk i s tlic pliol.on ~nonrei~tum. The corresponding atomic coherence length h/6p extends over ~everal periods d = X/2 = 7 r / k of the optical lattice. I3y adiabatically switching on thc light potential this initial momentum distribution is turned into a statistical mixture of 131ocli stales i n the ground energy band with a quasi-rnomnrtu~n width 6y = 6 p / h much snrallcithan the width 2k of the Brillouin zone. We mimic a constant external force by inl.roducing a t.uiiable frequency difference 6 v ( t ) between the two counterpropagating laser waves rreal.ing the optical potential. For a linear variation io time of 6v( l ) a constant inerl.ial force 1.’ = m a = -mX$6v( t ) /2 is exerted 011 the atoms in the frame of the slanding wave. After a given evolution time, we abruptly switch off the light potential and inrasure thr momentum distribution of the Blocli sl.ate with a resolution of R k / l S . ‘I’lie nieaii atomic velocity displays oscillations with periods in the millisecond range and a~nplit~ndes between 0.7 and 0.3 UR for potential depths (io between 0.8 and 5.6 ER. where i>f? = h.k/7n is the recoil velocity and ER = (hk)’/2m the recoil energy. We measured positive and negative effective masses, differeut from the mass of the free cesium atom. Froiu the measured velocity curves we can reconstruct the shape of the fundamental energy band. Wr have also calculated numerically the band structure for our experimental values of [ io. The agreement with the experimental data is quite good. \4k have niadc investigations of atom acceleratiori in (.he case of deeper potentials up to r:, = 10EJ3. We could still observe Bloch states after more thau 40 oscillation periods. 111 t.lrc Iaboralory frame, this corresponds to a coherent mom en tun^ transfer of S O U . prodnring aii atomic beam with subrecoil momentum spread (h1;/4) in the beam direction.