业界联合开发并验证用于预测立管流体动力系数的CFD建模实践:第二部分-交错浮力模块和条纹立管

Hyunchul Jang, M. Agrawal, Z. Huang, F. Jiang, Jie Wu, H. Lie, Eloise Croonenborghs
{"title":"业界联合开发并验证用于预测立管流体动力系数的CFD建模实践:第二部分-交错浮力模块和条纹立管","authors":"Hyunchul Jang, M. Agrawal, Z. Huang, F. Jiang, Jie Wu, H. Lie, Eloise Croonenborghs","doi":"10.1115/omae2022-79147","DOIUrl":null,"url":null,"abstract":"\n Hydrodynamic force coefficients are important parameters in the design and assessment of marine risers. The hydrodynamic coefficients are widely used for assessing marine riser responses due to floater motion excitation and vortex-induced vibrations (VIV). Traditionally, the hydrodynamic coefficients have been obtained from physical model tests on short rigid riser sections. Recently, the offshore industry has started to use Computational Fluid Dynamics (CFD) analysis for predicting the hydrodynamic coefficients, due to the recent advancement of CFD software and high-performance computing capabilities. However, a reliable CFD modeling practice is required for CFD analysis to be a more widely accepted prediction tool in the industry. A joint industry effort has been initiated for developing and verifying a reliable CFD modeling practice through a working group of the Reproducible Offshore CFD JIP. Within the working group, a CFD modeling practice document was written based on existing practices already validated with model test data and verified by blind validations with three CFD practitioners. The first year work focused on a bare riser with circular cross-section and has been published in OMAE 2021.\n This paper presents the working group’s second-year verification activities for a staggered buoyancy module and a straked riser. The verification work covers three numerical test problems: 1) stationary riser in steady current, 2) riser under forced-oscillation in calm water, 3) riser under forced-oscillation in steady current. In the stationary riser simulation, drag coefficient and lift coefficient from verifiers are compared. In the forced-oscillation simulation in calm water, the fully-submerged riser section oscillates with a sinusoidal motion, and damping and added-mass coefficients are compared. In the forced-oscillation simulation in steady current, where the riser oscillates in either inline or perpendicular direction to the steady current, lift coefficient and added mass coefficient are compared. By following the modeling practice, the CFD predictions are consistent with each other and close to the model test data for the majority of the test cases.","PeriodicalId":23502,"journal":{"name":"Volume 1: Offshore Technology","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Joint-Industry Effort to Develop and Verify CFD Modeling Practice for Predicting Hydrodynamic Coefficients of Risers: Part II – Staggered Buoyancy Module and Straked Riser\",\"authors\":\"Hyunchul Jang, M. Agrawal, Z. Huang, F. Jiang, Jie Wu, H. Lie, Eloise Croonenborghs\",\"doi\":\"10.1115/omae2022-79147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Hydrodynamic force coefficients are important parameters in the design and assessment of marine risers. The hydrodynamic coefficients are widely used for assessing marine riser responses due to floater motion excitation and vortex-induced vibrations (VIV). Traditionally, the hydrodynamic coefficients have been obtained from physical model tests on short rigid riser sections. Recently, the offshore industry has started to use Computational Fluid Dynamics (CFD) analysis for predicting the hydrodynamic coefficients, due to the recent advancement of CFD software and high-performance computing capabilities. However, a reliable CFD modeling practice is required for CFD analysis to be a more widely accepted prediction tool in the industry. A joint industry effort has been initiated for developing and verifying a reliable CFD modeling practice through a working group of the Reproducible Offshore CFD JIP. Within the working group, a CFD modeling practice document was written based on existing practices already validated with model test data and verified by blind validations with three CFD practitioners. The first year work focused on a bare riser with circular cross-section and has been published in OMAE 2021.\\n This paper presents the working group’s second-year verification activities for a staggered buoyancy module and a straked riser. The verification work covers three numerical test problems: 1) stationary riser in steady current, 2) riser under forced-oscillation in calm water, 3) riser under forced-oscillation in steady current. In the stationary riser simulation, drag coefficient and lift coefficient from verifiers are compared. In the forced-oscillation simulation in calm water, the fully-submerged riser section oscillates with a sinusoidal motion, and damping and added-mass coefficients are compared. In the forced-oscillation simulation in steady current, where the riser oscillates in either inline or perpendicular direction to the steady current, lift coefficient and added mass coefficient are compared. By following the modeling practice, the CFD predictions are consistent with each other and close to the model test data for the majority of the test cases.\",\"PeriodicalId\":23502,\"journal\":{\"name\":\"Volume 1: Offshore Technology\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Offshore Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2022-79147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Offshore Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2022-79147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

水动力系数是海洋隔水管设计和评价中的重要参数。水动力系数被广泛用于评估海洋隔水管在浮子运动激励和涡激振动(VIV)下的响应,传统上,水动力系数是通过短刚性隔水管段的物理模型试验获得的。最近,由于CFD软件和高性能计算能力的进步,海上工业开始使用计算流体动力学(CFD)分析来预测水动力系数。然而,要使CFD分析成为行业中更广泛接受的预测工具,需要可靠的CFD建模实践。可再生海上CFD JIP工作组发起了一项行业联合努力,旨在开发和验证可靠的CFD建模实践。在工作组中,CFD建模实践文档是基于已经通过模型测试数据验证的现有实践编写的,并由三位CFD从业者进行盲验证。第一年的工作重点是圆形横截面的裸立管,并已在OMAE 2021上发表。本文介绍了工作组对交错浮力模块和条纹立管的第二年验证活动。验证工作包括三个数值试验问题:1)静流条件下的静立隔水管,2)静水条件下的强迫振荡隔水管,3)静流条件下的强迫振荡隔水管。在固定立管仿真中,对验证器的阻力系数和升力系数进行了比较。在静水强迫振荡模拟中,完全浸没的隔水管段呈正弦振荡,并对阻尼系数和附加质量系数进行了比较。在恒流条件下立管随恒流沿直线或垂直方向振荡的强迫振荡仿真中,比较了升力系数和附加质量系数。通过遵循建模实践,CFD预测结果彼此一致,并且大多数测试用例的模型测试数据接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Joint-Industry Effort to Develop and Verify CFD Modeling Practice for Predicting Hydrodynamic Coefficients of Risers: Part II – Staggered Buoyancy Module and Straked Riser
Hydrodynamic force coefficients are important parameters in the design and assessment of marine risers. The hydrodynamic coefficients are widely used for assessing marine riser responses due to floater motion excitation and vortex-induced vibrations (VIV). Traditionally, the hydrodynamic coefficients have been obtained from physical model tests on short rigid riser sections. Recently, the offshore industry has started to use Computational Fluid Dynamics (CFD) analysis for predicting the hydrodynamic coefficients, due to the recent advancement of CFD software and high-performance computing capabilities. However, a reliable CFD modeling practice is required for CFD analysis to be a more widely accepted prediction tool in the industry. A joint industry effort has been initiated for developing and verifying a reliable CFD modeling practice through a working group of the Reproducible Offshore CFD JIP. Within the working group, a CFD modeling practice document was written based on existing practices already validated with model test data and verified by blind validations with three CFD practitioners. The first year work focused on a bare riser with circular cross-section and has been published in OMAE 2021. This paper presents the working group’s second-year verification activities for a staggered buoyancy module and a straked riser. The verification work covers three numerical test problems: 1) stationary riser in steady current, 2) riser under forced-oscillation in calm water, 3) riser under forced-oscillation in steady current. In the stationary riser simulation, drag coefficient and lift coefficient from verifiers are compared. In the forced-oscillation simulation in calm water, the fully-submerged riser section oscillates with a sinusoidal motion, and damping and added-mass coefficients are compared. In the forced-oscillation simulation in steady current, where the riser oscillates in either inline or perpendicular direction to the steady current, lift coefficient and added mass coefficient are compared. By following the modeling practice, the CFD predictions are consistent with each other and close to the model test data for the majority of the test cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Importance of the Inertial Components in Modal State Covariances Prelude FLNG Free Weathervaning Heading Prediction and Uncertainties, Based on Machine Learning Model Applying Open Web Architectures Towards Collaborative Maritime Design and Simulation Joint-Industry Effort to Develop and Verify CFD Modeling Practice for Predicting Wave Impact Dynamic Response of a Generic Self-Elevating Unit in Operation With Hull in Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1