{"title":"具有变量容差的支持向量回归模型","authors":"Jiangyue Wei, Xiaoxia He","doi":"10.1177/00202940231180620","DOIUrl":null,"url":null,"abstract":"Most works on Support Vector Regression (SVR) focus on kernel or loss functions, with the corresponding support vectors obtained using a fixed-radius [Formula: see text]-tube, affording good predictive performance on datasets. However, the fixed radius limitation prevents the adaptive selection of support vectors according to the data distribution characteristics, compromising the performance of the SVR-based methods. Therefore, this study proposes an “Alterable [Formula: see text]-Support Vector Regression” ([Formula: see text]-SVR) model by applying a novel [Formula: see text], named “Alterable [Formula: see text],” to the SVR model. Based on the data point sparsity at each location, the model solves the different [Formula: see text] at the corresponding position, and thus zoom-in or zoom-out the [Formula: see text]-tube by changing its radius. Such a variable [Formula: see text]-tube strategy diminishes noise and outliers in the dataset, enhancing the prediction performance of the [Formula: see text]-SVR model. Therefore, we suggest a novel non-deterministic algorithm to iteratively solve the complex problem of optimizing [Formula: see text] associated with every location. Extensive experimental results demonstrate that our approach can improve the accuracy and stability on simulated and real data compared with the baseline methods.","PeriodicalId":18375,"journal":{"name":"Measurement and Control","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Support vector regression model with variant tolerance\",\"authors\":\"Jiangyue Wei, Xiaoxia He\",\"doi\":\"10.1177/00202940231180620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most works on Support Vector Regression (SVR) focus on kernel or loss functions, with the corresponding support vectors obtained using a fixed-radius [Formula: see text]-tube, affording good predictive performance on datasets. However, the fixed radius limitation prevents the adaptive selection of support vectors according to the data distribution characteristics, compromising the performance of the SVR-based methods. Therefore, this study proposes an “Alterable [Formula: see text]-Support Vector Regression” ([Formula: see text]-SVR) model by applying a novel [Formula: see text], named “Alterable [Formula: see text],” to the SVR model. Based on the data point sparsity at each location, the model solves the different [Formula: see text] at the corresponding position, and thus zoom-in or zoom-out the [Formula: see text]-tube by changing its radius. Such a variable [Formula: see text]-tube strategy diminishes noise and outliers in the dataset, enhancing the prediction performance of the [Formula: see text]-SVR model. Therefore, we suggest a novel non-deterministic algorithm to iteratively solve the complex problem of optimizing [Formula: see text] associated with every location. Extensive experimental results demonstrate that our approach can improve the accuracy and stability on simulated and real data compared with the baseline methods.\",\"PeriodicalId\":18375,\"journal\":{\"name\":\"Measurement and Control\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00202940231180620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231180620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Support vector regression model with variant tolerance
Most works on Support Vector Regression (SVR) focus on kernel or loss functions, with the corresponding support vectors obtained using a fixed-radius [Formula: see text]-tube, affording good predictive performance on datasets. However, the fixed radius limitation prevents the adaptive selection of support vectors according to the data distribution characteristics, compromising the performance of the SVR-based methods. Therefore, this study proposes an “Alterable [Formula: see text]-Support Vector Regression” ([Formula: see text]-SVR) model by applying a novel [Formula: see text], named “Alterable [Formula: see text],” to the SVR model. Based on the data point sparsity at each location, the model solves the different [Formula: see text] at the corresponding position, and thus zoom-in or zoom-out the [Formula: see text]-tube by changing its radius. Such a variable [Formula: see text]-tube strategy diminishes noise and outliers in the dataset, enhancing the prediction performance of the [Formula: see text]-SVR model. Therefore, we suggest a novel non-deterministic algorithm to iteratively solve the complex problem of optimizing [Formula: see text] associated with every location. Extensive experimental results demonstrate that our approach can improve the accuracy and stability on simulated and real data compared with the baseline methods.