利用极限环提高Willshaw型网络的性能

G. Kohring
{"title":"利用极限环提高Willshaw型网络的性能","authors":"G. Kohring","doi":"10.1051/JPHYS:0199000510210238700","DOIUrl":null,"url":null,"abstract":"Simulation results of a Willshaw type model for storing sparsely coded patterns are presented. It is suggested that random patterns can be stored in Willshaw type models by transforming them into a set of sparsely coded patterns and retrieving this set as a limit cycle. In this way, the number of steps needed to recall a pattern will be a function of the amount of information the pattern contains. A general algorithm for simulating neural networks with sparsely coded patterns is also discussed, and, on a fully connected network of N=36864 neurons (1.4×10 9 couplings), it is shown to achieve effective updaping speeds as high as 1.6×10 11 coupling evaluations per second on one Cray-YMP processor","PeriodicalId":14747,"journal":{"name":"Journal De Physique","volume":"21 1","pages":"2387-2393"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance enhancement of Willshaw type networks through the use of limit cycles\",\"authors\":\"G. Kohring\",\"doi\":\"10.1051/JPHYS:0199000510210238700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulation results of a Willshaw type model for storing sparsely coded patterns are presented. It is suggested that random patterns can be stored in Willshaw type models by transforming them into a set of sparsely coded patterns and retrieving this set as a limit cycle. In this way, the number of steps needed to recall a pattern will be a function of the amount of information the pattern contains. A general algorithm for simulating neural networks with sparsely coded patterns is also discussed, and, on a fully connected network of N=36864 neurons (1.4×10 9 couplings), it is shown to achieve effective updaping speeds as high as 1.6×10 11 coupling evaluations per second on one Cray-YMP processor\",\"PeriodicalId\":14747,\"journal\":{\"name\":\"Journal De Physique\",\"volume\":\"21 1\",\"pages\":\"2387-2393\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Physique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/JPHYS:0199000510210238700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYS:0199000510210238700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

给出了一种存储稀疏编码模式的Willshaw型模型的仿真结果。建议将随机模式转换为稀疏编码模式集合,并将该集合作为极限环检索,从而将随机模式存储在Willshaw型模型中。通过这种方式,回忆模式所需的步骤数将是模式包含的信息量的函数。本文还讨论了一种用于模拟具有稀疏编码模式的神经网络的通用算法,并且,在N=36864个神经元(1.4×10 9个耦合)的全连接网络上,它被证明可以在一个cry - ymp处理器上实现高达每秒1.6×10 11次耦合评估的有效更新速度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance enhancement of Willshaw type networks through the use of limit cycles
Simulation results of a Willshaw type model for storing sparsely coded patterns are presented. It is suggested that random patterns can be stored in Willshaw type models by transforming them into a set of sparsely coded patterns and retrieving this set as a limit cycle. In this way, the number of steps needed to recall a pattern will be a function of the amount of information the pattern contains. A general algorithm for simulating neural networks with sparsely coded patterns is also discussed, and, on a fully connected network of N=36864 neurons (1.4×10 9 couplings), it is shown to achieve effective updaping speeds as high as 1.6×10 11 coupling evaluations per second on one Cray-YMP processor
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
بررسي اثر ضخامت زيرلايه بر جذب تك لايه هاي TMDC در ناحيه طول موج مرئي Inhibition of the transport of a Bose-Einstein condensate in a 1D random potential Twinmic: A European twin microscope station combining full-field imaging and scanning microscopy SCANNING TRANSMISSION X-RAY MICROSCOPY WITH A SEGMENTED DETECTOR Novel microstructured adaptive X-ray optics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1