Maria Fayyaz, Aqsa Iqbal, M. Maqsood, Haseeb Akram
{"title":"CRISPER/CAS:基因组编辑的潜在工具","authors":"Maria Fayyaz, Aqsa Iqbal, M. Maqsood, Haseeb Akram","doi":"10.47262//bl/7.2.20210711","DOIUrl":null,"url":null,"abstract":"The ability to engineer genomes presents a significant opportunity for applied biology research. In 2050, the population of this world is expected to reach 9.6 billion residents; rising food with better quality is the most promising approach to food security. Compared to earlier methodologies including Zinc Finger Nucleases (ZFNs) plus Transcription Activator-Like Effector Nucleases (TALENs), which were expensive as well as time-consuming, innovation in Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and related CRISPR (Cas) protein classifications allowed selective editing of genes for the enhancement of food. The basic mechanism of CRISPR Cas9 process and its applications on genome editing has been summarized in this manuscript. The method relies on Sequence-Specific Nucleases (SSNs) to create Double Stranded Breaks (DSB) of DNA at the locus of genome defined by user, mended by using one of two DNA mending ways: Non-Homologous End Joining (NHEJ) or Homology Directed Repair (HDR). Cas9, an RNA-guided endonuclease, was used to produce stable knock-in and knock-out mutants. The focus of this effort is to explore the CRISPR Cas9 genome editing to manage gene expression and improve future editing success. This adaptable technique can be consumed for a wide range of applications of genome editing requiring high precision. Advances in this technology have sparked renewed interest in the possibilities for editing genome in plants.","PeriodicalId":9154,"journal":{"name":"Biomedical Letters","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPER/CAS: A potential tool for genomes editing\",\"authors\":\"Maria Fayyaz, Aqsa Iqbal, M. Maqsood, Haseeb Akram\",\"doi\":\"10.47262//bl/7.2.20210711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to engineer genomes presents a significant opportunity for applied biology research. In 2050, the population of this world is expected to reach 9.6 billion residents; rising food with better quality is the most promising approach to food security. Compared to earlier methodologies including Zinc Finger Nucleases (ZFNs) plus Transcription Activator-Like Effector Nucleases (TALENs), which were expensive as well as time-consuming, innovation in Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and related CRISPR (Cas) protein classifications allowed selective editing of genes for the enhancement of food. The basic mechanism of CRISPR Cas9 process and its applications on genome editing has been summarized in this manuscript. The method relies on Sequence-Specific Nucleases (SSNs) to create Double Stranded Breaks (DSB) of DNA at the locus of genome defined by user, mended by using one of two DNA mending ways: Non-Homologous End Joining (NHEJ) or Homology Directed Repair (HDR). Cas9, an RNA-guided endonuclease, was used to produce stable knock-in and knock-out mutants. The focus of this effort is to explore the CRISPR Cas9 genome editing to manage gene expression and improve future editing success. This adaptable technique can be consumed for a wide range of applications of genome editing requiring high precision. Advances in this technology have sparked renewed interest in the possibilities for editing genome in plants.\",\"PeriodicalId\":9154,\"journal\":{\"name\":\"Biomedical Letters\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47262//bl/7.2.20210711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47262//bl/7.2.20210711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The ability to engineer genomes presents a significant opportunity for applied biology research. In 2050, the population of this world is expected to reach 9.6 billion residents; rising food with better quality is the most promising approach to food security. Compared to earlier methodologies including Zinc Finger Nucleases (ZFNs) plus Transcription Activator-Like Effector Nucleases (TALENs), which were expensive as well as time-consuming, innovation in Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and related CRISPR (Cas) protein classifications allowed selective editing of genes for the enhancement of food. The basic mechanism of CRISPR Cas9 process and its applications on genome editing has been summarized in this manuscript. The method relies on Sequence-Specific Nucleases (SSNs) to create Double Stranded Breaks (DSB) of DNA at the locus of genome defined by user, mended by using one of two DNA mending ways: Non-Homologous End Joining (NHEJ) or Homology Directed Repair (HDR). Cas9, an RNA-guided endonuclease, was used to produce stable knock-in and knock-out mutants. The focus of this effort is to explore the CRISPR Cas9 genome editing to manage gene expression and improve future editing success. This adaptable technique can be consumed for a wide range of applications of genome editing requiring high precision. Advances in this technology have sparked renewed interest in the possibilities for editing genome in plants.