探索深度学习处理器的可编程性:从架构到张量化

Chixiao Chen, Huwan Peng, Xindi Liu, Hongwei Ding, C. R. Shi
{"title":"探索深度学习处理器的可编程性:从架构到张量化","authors":"Chixiao Chen, Huwan Peng, Xindi Liu, Hongwei Ding, C. R. Shi","doi":"10.1145/3195970.3196049","DOIUrl":null,"url":null,"abstract":"This paper presents an instruction and Fabric Programmable Neuron Array (iFPNA) architecture, its 28nm CMOS chip prototype, and a compiler for the acceleration of a variety of deep learning neural networks (DNNs) including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and fully connected (FC) networks on chip. The iFPNA architecture combines instruction-level programmability as in an Instruction Set Architecture (ISA) with logic-level reconfigurability as in a Field-Programmable Gate Array (FPGA) in a sliced structure for scalability. Four data flow models, namely weight stationary, input stationary, row stationary and tunnel stationary, are described as the abstraction of various DNN data and computational dependence. The iFPNA compiler partitions a large-size DNN to smaller networks, each being mapped to, optimized and code generated for, the underlying iFPNA processor using one or a mixture of the four data-flow models. Experimental results have shown that state-of-art large-size CNNs, RNNs, and FC networks can be mapped to the iFPNA processor achieving the near ASIC performance.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"62 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Exploring the Programmability for Deep Learning Processors: from Architecture to Tensorization\",\"authors\":\"Chixiao Chen, Huwan Peng, Xindi Liu, Hongwei Ding, C. R. Shi\",\"doi\":\"10.1145/3195970.3196049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an instruction and Fabric Programmable Neuron Array (iFPNA) architecture, its 28nm CMOS chip prototype, and a compiler for the acceleration of a variety of deep learning neural networks (DNNs) including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and fully connected (FC) networks on chip. The iFPNA architecture combines instruction-level programmability as in an Instruction Set Architecture (ISA) with logic-level reconfigurability as in a Field-Programmable Gate Array (FPGA) in a sliced structure for scalability. Four data flow models, namely weight stationary, input stationary, row stationary and tunnel stationary, are described as the abstraction of various DNN data and computational dependence. The iFPNA compiler partitions a large-size DNN to smaller networks, each being mapped to, optimized and code generated for, the underlying iFPNA processor using one or a mixture of the four data-flow models. Experimental results have shown that state-of-art large-size CNNs, RNNs, and FC networks can be mapped to the iFPNA processor achieving the near ASIC performance.\",\"PeriodicalId\":6491,\"journal\":{\"name\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"volume\":\"62 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3195970.3196049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3196049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了一种指令和结构可编程神经元阵列(iFPNA)架构,其28nm CMOS芯片原型,以及用于加速各种深度学习神经网络(dnn)的编译器,包括卷积神经网络(cnn),循环神经网络(rnn)和片上全连接(FC)网络。iFPNA架构将指令级可编程性(如指令集架构(ISA))与逻辑级可重构性(如现场可编程门阵列(FPGA))结合在一个切片结构中,以实现可扩展性。将权重平稳、输入平稳、行平稳和隧道平稳四种数据流模型描述为各种深度神经网络数据的抽象和计算依赖性。iFPNA编译器将大型DNN划分为较小的网络,每个网络都映射到底层iFPNA处理器,并使用四种数据流模型中的一种或混合模型进行优化和生成代码。实验结果表明,最先进的大尺寸cnn、rnn和FC网络可以映射到iFPNA处理器上,实现接近ASIC的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the Programmability for Deep Learning Processors: from Architecture to Tensorization
This paper presents an instruction and Fabric Programmable Neuron Array (iFPNA) architecture, its 28nm CMOS chip prototype, and a compiler for the acceleration of a variety of deep learning neural networks (DNNs) including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and fully connected (FC) networks on chip. The iFPNA architecture combines instruction-level programmability as in an Instruction Set Architecture (ISA) with logic-level reconfigurability as in a Field-Programmable Gate Array (FPGA) in a sliced structure for scalability. Four data flow models, namely weight stationary, input stationary, row stationary and tunnel stationary, are described as the abstraction of various DNN data and computational dependence. The iFPNA compiler partitions a large-size DNN to smaller networks, each being mapped to, optimized and code generated for, the underlying iFPNA processor using one or a mixture of the four data-flow models. Experimental results have shown that state-of-art large-size CNNs, RNNs, and FC networks can be mapped to the iFPNA processor achieving the near ASIC performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soft-FET: Phase transition material assisted Soft switching F ield E ffect T ransistor for supply voltage droop mitigation Modelling Multicore Contention on the AURIX™ TC27x Sign-Magnitude SC: Getting 10X Accuracy for Free in Stochastic Computing for Deep Neural Networks* Generalized Augmented Lagrangian and Its Applications to VLSI Global Placement* Side-channel security of superscalar CPUs : Evaluating the Impact of Micro-architectural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1