{"title":"微通道形状和材料特性对大功率LED芯片散热性能的影响","authors":"Q. Mao, P. Deng","doi":"10.1109/NEMS.2014.6908858","DOIUrl":null,"url":null,"abstract":"Heat accumulation has become an important cause for the degradation of high power LEDs, and micro-channel cooler (MCC) is believed to be a promising solution for this issue. In this paper, a 3D transient heat transfer finite element model was established to investigate the cross-section shape and material of the MCC on cooling performance of high power LED chips. For comparison, three cross-section shapes (regular triangle, square and circle) and materials (Al, Cu and Si) were studied. We found that the Cu MCC with a regular triangular cross-section presented the best cooling performance among the others, indicating the lowest maximum and averaged temperature in the LED chip. As to the time response, the Si MCC with a regular triangular cross-section showed the fastest transient temperature response.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"78 1","pages":"498-501"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study of micro-channel shape and material property on cooling performance of high power LED chips\",\"authors\":\"Q. Mao, P. Deng\",\"doi\":\"10.1109/NEMS.2014.6908858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heat accumulation has become an important cause for the degradation of high power LEDs, and micro-channel cooler (MCC) is believed to be a promising solution for this issue. In this paper, a 3D transient heat transfer finite element model was established to investigate the cross-section shape and material of the MCC on cooling performance of high power LED chips. For comparison, three cross-section shapes (regular triangle, square and circle) and materials (Al, Cu and Si) were studied. We found that the Cu MCC with a regular triangular cross-section presented the best cooling performance among the others, indicating the lowest maximum and averaged temperature in the LED chip. As to the time response, the Si MCC with a regular triangular cross-section showed the fastest transient temperature response.\",\"PeriodicalId\":22566,\"journal\":{\"name\":\"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"volume\":\"78 1\",\"pages\":\"498-501\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2014.6908858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2014.6908858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of micro-channel shape and material property on cooling performance of high power LED chips
Heat accumulation has become an important cause for the degradation of high power LEDs, and micro-channel cooler (MCC) is believed to be a promising solution for this issue. In this paper, a 3D transient heat transfer finite element model was established to investigate the cross-section shape and material of the MCC on cooling performance of high power LED chips. For comparison, three cross-section shapes (regular triangle, square and circle) and materials (Al, Cu and Si) were studied. We found that the Cu MCC with a regular triangular cross-section presented the best cooling performance among the others, indicating the lowest maximum and averaged temperature in the LED chip. As to the time response, the Si MCC with a regular triangular cross-section showed the fastest transient temperature response.