相似聚类预测咖啡因的QSAR

Teodora E. Harsa, Alexandra M. Harsa, Beata Szefler
{"title":"相似聚类预测咖啡因的QSAR","authors":"Teodora E. Harsa, Alexandra M. Harsa, Beata Szefler","doi":"10.2478/s11532-013-0389-y","DOIUrl":null,"url":null,"abstract":"AbstractA novel QSAR approach based on correlation weighting and alignment over a hypermolecule that mimics the investigated correlational space was performed on a set of 40 caffeines downloaded from the PubChem database. The best models describing log P and LD50 values of this set of caffeine derivatives were validated against the external test set and in a new predictive model by using clusters of similarity.\n","PeriodicalId":9888,"journal":{"name":"Central European Journal of Chemistry","volume":"22 1","pages":"365-376"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"QSAR of caffeines by similarity cluster prediction\",\"authors\":\"Teodora E. Harsa, Alexandra M. Harsa, Beata Szefler\",\"doi\":\"10.2478/s11532-013-0389-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractA novel QSAR approach based on correlation weighting and alignment over a hypermolecule that mimics the investigated correlational space was performed on a set of 40 caffeines downloaded from the PubChem database. The best models describing log P and LD50 values of this set of caffeine derivatives were validated against the external test set and in a new predictive model by using clusters of similarity.\\n\",\"PeriodicalId\":9888,\"journal\":{\"name\":\"Central European Journal of Chemistry\",\"volume\":\"22 1\",\"pages\":\"365-376\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11532-013-0389-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11532-013-0389-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在PubChem数据库下载的一组40种咖啡因上,研究了一种基于相关加权和对齐的新型QSAR方法,该方法模拟了所研究的相关空间。在外部测试集和新的预测模型中,利用相似性聚类验证了描述该咖啡因衍生物的logp和LD50值的最佳模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QSAR of caffeines by similarity cluster prediction
AbstractA novel QSAR approach based on correlation weighting and alignment over a hypermolecule that mimics the investigated correlational space was performed on a set of 40 caffeines downloaded from the PubChem database. The best models describing log P and LD50 values of this set of caffeine derivatives were validated against the external test set and in a new predictive model by using clusters of similarity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3 months
期刊最新文献
Crystallographic and structural characterization of heterometallic platinum complexes Part V. Heteropentanuclear complexes Erratum to: “Occurrence of 2-phenylphenol in food paper packages” Preparation of selectively protected protoescigenin derivatives for synthesis of escin analogs and neoglycoconjugates Investigations of ternary complexes of Co(II) and Ni(II) with oxydiacetate anion and 1,10-phenanthroline or 2,2′-bipyridine in solutions L-alaninium perrhenate: crystal structure and non-linear optical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1