Nikita Mishra, Connor Imes, J. Lafferty, H. Hoffmann
{"title":"CALOREE","authors":"Nikita Mishra, Connor Imes, J. Lafferty, H. Hoffmann","doi":"10.1145/3296957.3173184","DOIUrl":null,"url":null,"abstract":"Many modern computing systems must provide reliable latency with minimal energy. Two central challenges arise when allocating system resources to meet these conflicting goals: (1) complexity modern hardware exposes diverse resources with complicated interactions and (2) dynamics latency must be maintained despite unpredictable changes in operating environment or input. Machine learning accurately models the latency of complex, interacting resources, but does not address system dynamics; control theory adjusts to dynamic changes, but struggles with complex resource interaction. We therefore propose CALOREE, a resource manager that learns key control parameters to meet latency requirements with minimal energy in complex, dynamic en- vironments. CALOREE breaks resource allocation into two sub-tasks: learning how interacting resources affect speedup, and controlling speedup to meet latency requirements with minimal energy. CALOREE deines a general control system whose parameters are customized by a learning framework while maintaining control-theoretic formal guarantees that the latency goal will be met. We test CALOREE's ability to deliver reliable latency on heterogeneous ARM big.LITTLE architectures in both single and multi-application scenarios. Compared to the best prior learning and control solutions, CALOREE reduces deadline misses by 60% and energy consumption by 13%.","PeriodicalId":50923,"journal":{"name":"ACM Sigplan Notices","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"CALOREE\",\"authors\":\"Nikita Mishra, Connor Imes, J. Lafferty, H. Hoffmann\",\"doi\":\"10.1145/3296957.3173184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many modern computing systems must provide reliable latency with minimal energy. Two central challenges arise when allocating system resources to meet these conflicting goals: (1) complexity modern hardware exposes diverse resources with complicated interactions and (2) dynamics latency must be maintained despite unpredictable changes in operating environment or input. Machine learning accurately models the latency of complex, interacting resources, but does not address system dynamics; control theory adjusts to dynamic changes, but struggles with complex resource interaction. We therefore propose CALOREE, a resource manager that learns key control parameters to meet latency requirements with minimal energy in complex, dynamic en- vironments. CALOREE breaks resource allocation into two sub-tasks: learning how interacting resources affect speedup, and controlling speedup to meet latency requirements with minimal energy. CALOREE deines a general control system whose parameters are customized by a learning framework while maintaining control-theoretic formal guarantees that the latency goal will be met. We test CALOREE's ability to deliver reliable latency on heterogeneous ARM big.LITTLE architectures in both single and multi-application scenarios. Compared to the best prior learning and control solutions, CALOREE reduces deadline misses by 60% and energy consumption by 13%.\",\"PeriodicalId\":50923,\"journal\":{\"name\":\"ACM Sigplan Notices\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Sigplan Notices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3296957.3173184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigplan Notices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3296957.3173184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Many modern computing systems must provide reliable latency with minimal energy. Two central challenges arise when allocating system resources to meet these conflicting goals: (1) complexity modern hardware exposes diverse resources with complicated interactions and (2) dynamics latency must be maintained despite unpredictable changes in operating environment or input. Machine learning accurately models the latency of complex, interacting resources, but does not address system dynamics; control theory adjusts to dynamic changes, but struggles with complex resource interaction. We therefore propose CALOREE, a resource manager that learns key control parameters to meet latency requirements with minimal energy in complex, dynamic en- vironments. CALOREE breaks resource allocation into two sub-tasks: learning how interacting resources affect speedup, and controlling speedup to meet latency requirements with minimal energy. CALOREE deines a general control system whose parameters are customized by a learning framework while maintaining control-theoretic formal guarantees that the latency goal will be met. We test CALOREE's ability to deliver reliable latency on heterogeneous ARM big.LITTLE architectures in both single and multi-application scenarios. Compared to the best prior learning and control solutions, CALOREE reduces deadline misses by 60% and energy consumption by 13%.
期刊介绍:
The ACM Special Interest Group on Programming Languages explores programming language concepts and tools, focusing on design, implementation, practice, and theory. Its members are programming language developers, educators, implementers, researchers, theoreticians, and users. SIGPLAN sponsors several major annual conferences, including the Symposium on Principles of Programming Languages (POPL), the Symposium on Principles and Practice of Parallel Programming (PPoPP), the Conference on Programming Language Design and Implementation (PLDI), the International Conference on Functional Programming (ICFP), the International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), as well as more than a dozen other events of either smaller size or in-cooperation with other SIGs. The monthly "ACM SIGPLAN Notices" publishes proceedings of selected sponsored events and an annual report on SIGPLAN activities. Members receive discounts on conference registrations and free access to ACM SIGPLAN publications in the ACM Digital Library. SIGPLAN recognizes significant research and service contributions of individuals with a variety of awards, supports current members through the Professional Activities Committee, and encourages future programming language enthusiasts with frequent Programming Languages Mentoring Workshops (PLMW).