热带泥炭的物理岩土特性及其稳定性

IF 1.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Mires and Peat Pub Date : 2018-09-19 DOI:10.5772/INTECHOPEN.74173
P. Kolay, S. Taib
{"title":"热带泥炭的物理岩土特性及其稳定性","authors":"P. Kolay, S. Taib","doi":"10.5772/INTECHOPEN.74173","DOIUrl":null,"url":null,"abstract":"The chapter presents the physical and engineering properties of tropical peat treated with various types of stabilizers. Quick lime (QL), fly ash (FA), and ordinary Portland cement (OPC) were used as stabilizers. The amounts of QL, FA, and OPC added with the peat samples are in the range of 2 – 8, 5 – 20, and 5 – 20%, respectively. Various physical or index and engineering tests have been conducted to characterize the peat samples. Unconfined compressive strength (UCS) tests were conducted on original and treated peat samples cured for 7, 14, and 28 days. The results show that the UCS value increases with the increase of all stabilizers used and with curing period. The UCS tests were also conducted on the peat samples with the combination of QL and FA to study the combined effects of the stabilizers. The present study established different correlations between physical and engineering properties of original peat and UCS results on treated peat samples with different types of stabilizers. Geotechnical engineers can refer to these correlations to determine the bearing capacity of treated peat. In addition, scanning electron microscope (SEM) studies were conducted on original and treated peat samples to investigate the microstructure of the samples.","PeriodicalId":48721,"journal":{"name":"Mires and Peat","volume":"80 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2018-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Physical and Geotechnical Properties of Tropical Peat and Its Stabilization\",\"authors\":\"P. Kolay, S. Taib\",\"doi\":\"10.5772/INTECHOPEN.74173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The chapter presents the physical and engineering properties of tropical peat treated with various types of stabilizers. Quick lime (QL), fly ash (FA), and ordinary Portland cement (OPC) were used as stabilizers. The amounts of QL, FA, and OPC added with the peat samples are in the range of 2 – 8, 5 – 20, and 5 – 20%, respectively. Various physical or index and engineering tests have been conducted to characterize the peat samples. Unconfined compressive strength (UCS) tests were conducted on original and treated peat samples cured for 7, 14, and 28 days. The results show that the UCS value increases with the increase of all stabilizers used and with curing period. The UCS tests were also conducted on the peat samples with the combination of QL and FA to study the combined effects of the stabilizers. The present study established different correlations between physical and engineering properties of original peat and UCS results on treated peat samples with different types of stabilizers. Geotechnical engineers can refer to these correlations to determine the bearing capacity of treated peat. In addition, scanning electron microscope (SEM) studies were conducted on original and treated peat samples to investigate the microstructure of the samples.\",\"PeriodicalId\":48721,\"journal\":{\"name\":\"Mires and Peat\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2018-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mires and Peat\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.74173\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mires and Peat","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.74173","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 10

摘要

本章介绍了用各种稳定剂处理过的热带泥炭的物理和工程性质。采用生石灰(QL)、粉煤灰(FA)和普通硅酸盐水泥(OPC)作为稳定剂。泥炭样品中QL、FA和OPC的添加量分别在2 - 8%、5 - 20%和5 - 20%之间。进行了各种物理或指标和工程试验来表征泥炭样品。无侧限抗压强度(UCS)测试分别对原始和处理过的泥炭样品进行了7、14和28天的固化。结果表明,随着稳定剂用量的增加和固化时间的延长,UCS值也随之增加。还对泥炭样品进行了QL和FA联合使用的UCS试验,研究了稳定剂的联合作用。本研究建立了原始泥炭的物理和工程性质与不同类型稳定剂处理泥炭样品的UCS结果之间的不同相关性。岩土工程师可以参考这些相关性来确定处理过的泥炭的承载力。此外,对原始泥炭样品和处理后的泥炭样品进行了扫描电镜(SEM)研究,研究了样品的微观结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physical and Geotechnical Properties of Tropical Peat and Its Stabilization
The chapter presents the physical and engineering properties of tropical peat treated with various types of stabilizers. Quick lime (QL), fly ash (FA), and ordinary Portland cement (OPC) were used as stabilizers. The amounts of QL, FA, and OPC added with the peat samples are in the range of 2 – 8, 5 – 20, and 5 – 20%, respectively. Various physical or index and engineering tests have been conducted to characterize the peat samples. Unconfined compressive strength (UCS) tests were conducted on original and treated peat samples cured for 7, 14, and 28 days. The results show that the UCS value increases with the increase of all stabilizers used and with curing period. The UCS tests were also conducted on the peat samples with the combination of QL and FA to study the combined effects of the stabilizers. The present study established different correlations between physical and engineering properties of original peat and UCS results on treated peat samples with different types of stabilizers. Geotechnical engineers can refer to these correlations to determine the bearing capacity of treated peat. In addition, scanning electron microscope (SEM) studies were conducted on original and treated peat samples to investigate the microstructure of the samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mires and Peat
Mires and Peat ENVIRONMENTAL SCIENCES-
CiteScore
2.30
自引率
16.70%
发文量
0
审稿时长
33 weeks
期刊介绍: Mires and Peat is a peer-reviewed internet journal focusing specifically on mires, peatlands and peat. As a truly “free-to-users” publication (i.e. NO CHARGES to authors OR readers), it is immediately accessible to readers and potential authors worldwide. It is published jointly by the International Peatland Society (IPS) and the International Mire Conservation Group (IMCG). Mires and Peat is indexed by Thomson Reuters Web of Science (2017 Impact Factors: 1.326 [two-year] and 1.638 [five-year]), Elsevier Scopus, EBSCO Environment Complete, CABI Abstracts, CSA Proquest (including their Aquatic Science and Fisheries Abstracts ASFA, Ecology, Entomology, Animal Behavior, Aqualine and Pollution databases) and Directory of Open Access Journals (DOAJ). Mires and Peat also participates in the CABI Full Text Repository, and subscribes to the Portico E-journal Preservation Service (LTPA). Mires and Peat publishes high-quality research papers on all aspects of peatland science, technology and wise use, including: ecology, hydrology, survey, inventory, classification, functions and values of mires and peatlands; scientific, economic and human aspects of the management of peatlands for agriculture, forestry, nature conservation, environmental protection, peat extraction, industrial development and other purposes; biological, physical and chemical characteristics of peat; and climate change and peatlands. Short communications and review articles on these and related topics will also be considered; and suggestions for special issues of the Journal based on the proceedings of conferences, seminars, symposia and workshops will be welcomed. The submission of material by authors and from countries whose work would otherwise be inaccessible to the international community is particularly encouraged.
期刊最新文献
Towards net zero CO2 in 2050: an emission reduction pathway for organic soils in Germany Ecohydrological analysis of a South African through-flow mire: Vankervelsvlei revisited Soil CO2 emissions and net primary production of an oil palm plantation established on tropical peat Plant community assembly is predicted by an environmental gradient in high-altitude wetlands in the semiarid western bolivian andes Moth Responses to forest-to-bog restoration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1