{"title":"tic增强金属玻璃复合涂层的合成与表征","authors":"Z. Ö. Yazici","doi":"10.5755/J02.MS.23362","DOIUrl":null,"url":null,"abstract":"In this paper, the Co-based metallic glass coatings deposited on soft metal substrates by pneumatic squeezing method were investigated. Also, the effects of TiC additions (%0-10) on the mechanical properties of the coatings were discussed in terms of hardness measurements. Microstructural observations have shown that the coatings with a thickness range of about 20-30 µm can be produced as non-porous layers in either entirely amorphous (0-6% TiC) or composite (8-10% TiC) structures. The glassy and TiC-reinforced glass composite coatings exhibit good adhesion characteristics and form a harder layer with the average hardness values between 1000 and 1600 Hv respectively. The hardness measurements evaluated together with XRD and EDX analyses showed that (Ti,Ta)C crystals precipitated in the amorphous matrix are responsible for further increase of the coatings hardness value up to 1600 Hv. The results also provide clues for mass manufacturing route in one step synthesis of the metallic glass and their composite coatings.","PeriodicalId":18298,"journal":{"name":"Materials Science-medziagotyra","volume":"209 1","pages":"32-36"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis and Characterization of TiC-reinforced Metallic Glass Composite Coatings\",\"authors\":\"Z. Ö. Yazici\",\"doi\":\"10.5755/J02.MS.23362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the Co-based metallic glass coatings deposited on soft metal substrates by pneumatic squeezing method were investigated. Also, the effects of TiC additions (%0-10) on the mechanical properties of the coatings were discussed in terms of hardness measurements. Microstructural observations have shown that the coatings with a thickness range of about 20-30 µm can be produced as non-porous layers in either entirely amorphous (0-6% TiC) or composite (8-10% TiC) structures. The glassy and TiC-reinforced glass composite coatings exhibit good adhesion characteristics and form a harder layer with the average hardness values between 1000 and 1600 Hv respectively. The hardness measurements evaluated together with XRD and EDX analyses showed that (Ti,Ta)C crystals precipitated in the amorphous matrix are responsible for further increase of the coatings hardness value up to 1600 Hv. The results also provide clues for mass manufacturing route in one step synthesis of the metallic glass and their composite coatings.\",\"PeriodicalId\":18298,\"journal\":{\"name\":\"Materials Science-medziagotyra\",\"volume\":\"209 1\",\"pages\":\"32-36\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science-medziagotyra\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.5755/J02.MS.23362\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science-medziagotyra","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5755/J02.MS.23362","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis and Characterization of TiC-reinforced Metallic Glass Composite Coatings
In this paper, the Co-based metallic glass coatings deposited on soft metal substrates by pneumatic squeezing method were investigated. Also, the effects of TiC additions (%0-10) on the mechanical properties of the coatings were discussed in terms of hardness measurements. Microstructural observations have shown that the coatings with a thickness range of about 20-30 µm can be produced as non-porous layers in either entirely amorphous (0-6% TiC) or composite (8-10% TiC) structures. The glassy and TiC-reinforced glass composite coatings exhibit good adhesion characteristics and form a harder layer with the average hardness values between 1000 and 1600 Hv respectively. The hardness measurements evaluated together with XRD and EDX analyses showed that (Ti,Ta)C crystals precipitated in the amorphous matrix are responsible for further increase of the coatings hardness value up to 1600 Hv. The results also provide clues for mass manufacturing route in one step synthesis of the metallic glass and their composite coatings.
期刊介绍:
It covers the fields of materials science concerning with the traditional engineering materials as well as advanced materials and technologies aiming at the implementation and industry applications. The variety of materials under consideration, contributes to the cooperation of scientists working in applied physics, chemistry, materials science and different fields of engineering.